Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numerical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capacity and settlement of under-reamed piles compared with uniform pile sections by sinusoidal excitation machines foundation. Different geometrical under-reamed piles single and double bulbs compared with uniform pile using finite element method, PLAXIS 3D software. The result showed that uniform pile fizzles out to support the total load and the final settlement was 4.97 cm. Single under-reamed pile S.U.P and double under-reamed pile D.U.P can be reduced final settlement 76% and 81 % respectively.
Abstract
This research aims to measure the effect of Self competency of the Managers in their behavior from the view point of the working individual in the organization since the behavior of managers is considered to be one of the essential variables in the organization which can affect the performance and the commitment of the working individual. the questioners was used to gather the data and the Iraqi Rail Road co. was the field of the study . and a random sample of (36) individual of the subordinates of the managers society of the study and used the (SPSS) statistical program was used in the analysis of the data of the research . the findings refer to the existence of a
... Show MoreThis research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
At present, the ability to promote national economy by adjusting to political, economic, and technological variables is one of the largest challenges faced by organization productivity. This challenge prompts changes in structure and line productivity, given that cash has not been invested. Thus, the management searches for investment opportunities that have achieved the optimum value of the annual increases in total output value of the production line workers in the laboratory. Therefore, the application of dynamic programming model is adopted in this study by addressing the division of investment expenditures to cope with market-dumping policy and to strive non-stop production at work.
Background/Aim: Endometrial abnormalities represent a diagnostic challenge due to overlapping imaging features with normal endometrium. Aim of this study was to assess accuracy of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging (MRI) in evaluation of endometrial lesions in comparison with T2 and to assess local staging validity and degree of myometrial invasion in malignancy. Methods: Forty patients with abnormal vaginal bleeding or sonographic thickened endometrial were recruited. MRI examination of pelvis was per-formed using 1.5 T scanner with a pelvic array coil. Conventional T1-and T2, dynamic contrast-enhanced (DCE) sequences and diffusion-weighted image (DWI) were performed. Results: Mean age of pa
... Show MoreThe present study has been carried out to estimate heavy metals mobility, bioconcentration and transfer from polluted soil to roots tissues and from roots tissues to aerial parts using bioconcentration factor and translocation factor. Soil samples and the biomass of the eight vegetable species have been collected during summer season, 2019 from four different sites in Wadi Al-Arg, Taif Governorate, KSA. In general, heavy metals content of soil samples in site III and IV have recorded elevated values compared with those of site I and II. The soil from site IV has shown the highest concentration of Mn, Ni, Cr, Pb, Cu, and Cd amounted 31.63, 14.05, 13.56, 22.79, 31.02 and 2.98 mg/kg dry soil respectively, while the soil from site III has sh
... Show MorePressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The eff
... Show MoreComputer modeling has been used to investing the Coulomb coupling parameter ?. The effects of the structure parameter K, grain charge Z, plasma density N, temperature dust grain Td, on the Coulomb coupling parameter had been studied. It was seen that the ? was increasing with increasing Z and N, and decrease with increasing K and T. Also the critical value of ? that the phase transfer of the plasma state from liquid to solid was studied.
Abstract
In order to make an improvement associated with rotating biological contactor (RBC), a new design of biofilm reactor called as Rotating perforated disc biological contactor (RPBC) was developed in which the rotating discs are perforated. The transfer of oxygen from air to wastewater was investigated. Mass-transfer coefficient (KLa) in the liquid phase was determined by measuring the rate transfer of oxygen. A laboratory scale of (RPBC) consisted of a semicircular trough was used with a working capacity of 40 liters capacity of liquid. Synthetic wastewater was used as a liquid phase, while air was used as a gas phase.
The effects of m
... Show More