Porous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
Speech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
Recognition is one of the basic characteristics of human brain, and also for the living creatures. It is possible to recognize images, persons, or patterns according to their characteristics. This recognition could be done using eyes or dedicated proposed methods. There are numerous applications for pattern recognition such as recognition of printed or handwritten letters, for example reading post addresses automatically and reading documents or check reading in bank.
One of the challenges which faces researchers in character recognition field is the recognition of digits, which are written by hand. This paper describes a classification method for on-line handwrit
... Show MoreAccurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetylene over the CeO2(111) surface. Overall, we find th
... Show MoreFrictional heat is generated when the clutch starts to engag. As a result of this operation the surface temperature is increased rapidly due to the difference in speed between the driving and driven parts. The influence of the thickness of frictional facing on the distribution of the contact pressure of the multi-disc clutches has been investigated using a numerical approach (the finite element method). The analysis of contact problem has been carried out for a multiple disc dry clutch (piston, clutch discs, separators and pressure plate). The results present the distribution of the contact pressure on all tShe surfaces of friction discs that existed in the friction clutch system. Axisymmetric finite element models have been developed to ac
... Show MoreThe influence of fear on the dynamics of harvested prey-predator model with intra-specific competition is suggested and studied, where the fear effect from the predation causes decreases of growth rate of prey. We suppose that the predator attacks the prey under the Holling type IV functional response. he existence of the solution is investigated and the bounded-ness of the solution is studied too. In addition, the dynamical behavior of the system is established locally and globally. Furthermore, the persistence conditions are investigated. Finally, numerical analysis of the system is carried out.
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.