Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results based on MSE were compared with those obtained from the moments method and showed that the Canonical GA and compact GA can give good estimator of θ for the MA(1) model. Another comparison has been conducted to show that the cGA method has less number of function evaluations, minimum searched space percentage, faster convergence speed and has a higher optimal precision than that of the Canonical GA.
The present paper confirmed the presence of Phrynocephalus maculatus longicaudatus Haas, 1957 in Iraq and recorded the first observations of this taxon in Al-Muthanna province southwestern of Iraq. The existence of the species is yet uncertain in Iraq. The habitat and morphological characteristics of this species were reviewed.
The present paper confirmed the presence of Phrynocephalus maculatus longicaudatus Haas, 1957 in Iraq and recorded the first observations of this taxon in Al-Muthanna province southwestern of Iraq. The existence of the species is yet uncertain in Iraq. The habitat and morphological characteristics of this species were reviewed.
This work aims to see the positive association rules and negative association rules in the Apriori algorithm by using cosine correlation analysis. The default and the modified Association Rule Mining algorithm are implemented against the mushroom database to find out the difference of the results. The experimental results showed that the modified Association Rule Mining algorithm could generate negative association rules. The addition of cosine correlation analysis returns a smaller amount of association rules than the amounts of the default Association Rule Mining algorithm. From the top ten association rules, it can be seen that there are different rules between the default and the modified Apriori algorithm. The difference of the obta
... Show MoreVarious speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression alg
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreBetween the 1980s and 1990s, the HURIER model was developed by Brownell and consist of six interrelated components, which are represented in these acronyms (Hearing, Understanding, Remembering, Interpreting, Evaluating, and Responding). This model can be considered as a framework of the behavioral approach which can be used to improve students’ listening performance and to foster a positive attitude toward listening. Many learners find it challenging to improve their listening skills when learning a second or foreign language because it requires the integration of both listening and speaking. Consequently, enhancing this skill will help students improve other language skills, including reading, speaking, and writing. The HURI
... Show MoreThe present work represents a theoretical study for the correction of spherical aberration of an immersion lens of axial symmetry operating under the effect of space charge, represented by a second order function and preassigned magnification conditions in a focusing of high current ion beams. The space charge depends strongly on the value of the ionic beam current which is found to be very effective and represents an important factor effecting the value of spherical aberration .The distribution of the space charge was measured from knowing it's density .It is effect on the trajectory of the ion beam was studied. To obtain the trajectories of the charged particles which satisfy the preassined potential the axial electrostatic potential w
... Show MoreTo perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show More