Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results based on MSE were compared with those obtained from the moments method and showed that the Canonical GA and compact GA can give good estimator of θ for the MA(1) model. Another comparison has been conducted to show that the cGA method has less number of function evaluations, minimum searched space percentage, faster convergence speed and has a higher optimal precision than that of the Canonical GA.
Profit is a goal sought by all banks because it brings them income and guarantees them survival and continuity, and on the other hand, facing commitments without financial crisis. Hence the idea of research in his quest to build scientific tools and means that can help bank management in particular, investors, lenders and others to predict financial failure and to detect early financial failures. The research has produced a number of conclusions, the most important of which is that all Islamic banks sample a safe case of financial failure under the Altman model, while according to the Springate model all Islamic banks sample a search for a financial failure except the Islamic Bank of Noor Iraq for Investment and Finance )BINI(. A
... Show MoreThis study aims at examining the effectiveness of using the narrative approach in teaching the Interpretation of the Qur'an course in the development of conceptual comprehension among first-grade middle school female students. To achieve the objective of this study, a quantitative quasi-experimental design has been used. The sample consisted of first-grade middle school female students at "the third middle school" in Buraidah city, as this school suits the objective of the study. A test of conceptual understanding has been built by the researchers according to a list of conceptual understating skills at a significance level of α ≤ 0.05. Results have shown that there are statistically significant differences at the level (α ≤ 0,05)
... Show MorePurpose: To use the balanced measurement approach as a strategic link for increasing the effectiveness of strategic planning in the direction of achieving satisfaction rates at Bisha University in Saudi Arabia
Design / methodology / approach –The questionnaire survey was used to collect the data of the study from the faculty members at University of Bisha.
Findings –Prove the assumption that the use of the balanced measurement approach - as a strategic planning tool - leads to maximize the satisfaction rates among faculty members at the University of Bisha.
Research limitations/implications- adopt effective strategic planning in order to achieve
... Show MoreFeatures is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
Tumor necrosis factor-alpha (TNF-α) antagonists’ therapy are expensive and has a non-responsive rate between 30% to 40% in rheumatoid arthritis patients. Genetic variation plays a vital role in the responsiveness to this type of therapy.The aim of this study is to investigate if the presence of genetic polymorphism in the TNF-α gene promoter region at locations -376 G/A (rs1800750), -806 C/T (rs4248158), and -1031 T/C (rs1799964) affects rheumatoid arthritis patient's tendency to be a non-responder to etanercept.
Eighty RA patients on etanercept (ETN) for at least six months were recruited from the Rheumatology Unit at Baghdad Teaching Hospital. Based on The European League Against Rheumatism response (EULAR) criteria, patient
... Show MoreJPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreAssociation rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
For businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers
... Show More