Preferred Language
Articles
/
7BenNY8BVTCNdQwCEWHJ
The compact Genetic Algorithm for likelihood estimator of first order moving average model
...Show More Authors

Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results based on MSE were compared with those obtained from the moments method and showed that the Canonical GA and compact GA can give good estimator of θ for the MA(1) model. Another comparison has been conducted to show that the cGA method has less number of function evaluations, minimum searched space percentage, faster convergence speed and has a higher optimal precision than that of the Canonical GA.

Scopus Crossref
View Publication
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
Double Stage Cumulative Shrunken Bayes Estimator for the variance of Normal distribution for equal volume of two sample
...Show More Authors

In this article we study the variance estimator for the normal distribution when the mean is un known depend of the cumulative function between unbiased estimator and Bays estimator for the variance of normal distribution which is used include Double Stage Shrunken estimator to obtain higher efficiency for the variance estimator of normal distribution when the mean is unknown by using small volume equal volume of two sample .

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Maximum Likelihood and Bayesian Methods For Estimating The Gamma Regression With Practical Application
...Show More Authors

In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 27 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Dynamics of a Fractional-Order Prey-Predator Model with Fear Effect and Harvesting
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Damage Detection and Assessment of Stiffness and Mass Matrices in Curved Simply Supported Beam Using Genetic Algorithm
...Show More Authors

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 06 2023
Journal Name
Journal Of Economics And Administrative Sciences
Probit and Improved Probit Transform-Based Kernel Estimator for Copula Density
...Show More Authors

Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The

... Show More
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
On Semi-p-Compact Space1
...Show More Authors

The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.

View Publication Preview PDF
Crossref
Publication Date
Wed May 08 2013
Journal Name
Iraqi Journal Of Science
On D- Compact Topological Groups
...Show More Authors

In the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.

Publication Date
Sun Oct 03 2010
Journal Name
Baghdad Science Journal
On Semi-p-Compact Space
...Show More Authors

Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 15 2023
Journal Name
Journal Of Baghdad College Of Dentistry
Cavity preparation model in rat maxillary first molars: A pilot study
...Show More Authors

Objective: To conduct a standardized method for cavity preparation on the palatal surface of rat maxillary molars and to introduce a standardized method for tooth correct alignment within the specimen during the wax embedding procedure to better detect cavity position within the examined slides. Materials and methods: Six male Wistar rats, aged 4-6 weeks, were used. The maxillary molars of three animals were sectioned in the frontal plane to identify the thickness of hard tissue on the palatal surface of the first molar which was (250-300µm). The end-cutting bur (with a cutting head diameter of 0.2mm) was suitable for preparing a dentinal cavity (70-80µm) depth. Cavity preparation was then performed using the same bur on the tooth surf

... Show More
View Publication Preview PDF
Scopus Crossref