Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results based on MSE were compared with those obtained from the moments method and showed that the Canonical GA and compact GA can give good estimator of θ for the MA(1) model. Another comparison has been conducted to show that the cGA method has less number of function evaluations, minimum searched space percentage, faster convergence speed and has a higher optimal precision than that of the Canonical GA.
In this paper, we propose a new approach of regularization for the left censored data (Tobit). Specifically, we propose a new Bayesian group Bridge for left-censored regression ( BGBRLC). We developed a new Bayesian hierarchical model and we suggest a new Gibbs sampler for posterior sampling. The results show that the new approach performs very well compared to some existing approaches.
The theory of Pilgrims in the Magra is based on Dekru's view that the mgha is considered a pilgrim, and that the pilgrims are pilgrims
Tujia purely exposes the abstract temptation structure, and that the discharge of the Mfezouz Mfarouz is through factors
This theory tends to highlight the role of pilgrim function as a language
There is no preservation unless directed towards a particular outcome. Gemma can include morphine blindness
Or formulas that allow for the presentation of a pilgrimage to a writer in addition to the content of the news, and the guidance of the recipient
In one direction or another.
The orbital masses are one of these morphines and functional components that achieve function
The Togolese
The internet, unlike other traditional means of communication, has a flexibility to stimulate the user and allows him to develop it. Perhaps, the reason for the superiority of the internet over other traditional means of communication is the possibility of change and transmission from one stage to another in a short period. This means that the internet is able to move from the use to the development of the use and then the development of means and innovation as the innovation of the internet is a logical product of the interaction of the user with the network. The internet invests all the proposals and ideas and does not ignore any even if it is simple. This is represented in social networking sites which in fact reflects personal emotio
... Show MoreThis article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.
In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne
... Show MoreSoftware testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing
... Show MoreThe paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.