Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results based on MSE were compared with those obtained from the moments method and showed that the Canonical GA and compact GA can give good estimator of θ for the MA(1) model. Another comparison has been conducted to show that the cGA method has less number of function evaluations, minimum searched space percentage, faster convergence speed and has a higher optimal precision than that of the Canonical GA.
Metal complexes chrome(III), manganese(II), iron(III), cobalt(II), nickel(II), cupper(II) and zinc(II) with diazonium of 3-amino-2-chloropyridine of general formula [2-Cl-C5H3N≡N]n[MXm], where n=2 or 3 for divalent and trivalent metal, m= 4 or 6 were synthesized. The complexes have been characterized by flame atomic absorption, (C.H.N), molar conductance, magnetic susceptibility UV-vis spectra, infrared spectra,1H-NMR spectroscopy and thermo gravimetric analysis (TGA and DTA). The measurements showed that the divalent metal ion complexes (M2+) have (1:2) M:L ratio with tetrahedral geometry around metal ions while the trivalent metal ions (M3+) formed (1:3) m
... Show MoreThe research problem is that most of the construction projects exceed the planned value, due to the failure to implement the plans on time. The current study aims to monitor the implementation of the project and for each of the executed tasks of the table of quantities in order to detect deviations at the time they occur, evaluate the time and cost performance, and then identify the areas of waste and analyze the implementation of each task in order to diagnose the underlying problems and find possible and applicable solutions in the environment Iraqi. The research was applied in one of the companies specialized in the field of construction projects, and one of the most important conclusions reached is the possibility of applying
... Show MoreEach project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent
Aerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.
... Show MoreIn this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the problem of the semiotic employment of religious symbols in press reports published in the electronic press across two levels: Reading to perceive the visual message in its abstract form, and the second for re-understanding and interpretation, as this level gives semantics to reveal the implicit level of media messages through a set of semiotic criteria on which it was based to cut texts to reach the process of understanding and interpretation.
The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the p
... Show More
The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.
Among the problems that appear as a result of the use of some statistical methods I
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto
... Show More