Abstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to 3.43 dBi at maximum. The antenna size is compacted to a 32 mm × 24 mm using a fractal-shaped MTM when mounted on the INP substrate with a relative permittivity ɛr = 3.106−j0.0314 and a relative permeability µr = 1.548−j0.0907. Finally, the maximum obtained voltage from the proposed antenna is found about 2 V at 2.45 GHz and 2.5 V at 5.8 GHz, where, the corresponding measured equivalent isotropic radiated power is about 2.35 W at 2.45 GHz and 6.12 W at 5.8 GHz.
Optical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.
Ground-based active optical sensors (GBAOS) have been successfully used in agriculture to predict crop yield potential (YP) early in the season and to improvise N rates for optimal crop yield. However, the models were found weak or inconsistent due to environmental variation especially rainfall. The objectives of the study were to evaluate if GBAOS could predict YP across multiple locations, soil types, cultivation systems, and rainfall differences. This study was carried from 2011 to 2013 on corn (Zea mays L.) in North Dakota, and in 2017 in potatoes in Maine. Six N rates were used on 50 sites in North Dakota and 12 N rates on two sites, one dryland and one irrigated, in Maine. Two active GBAOS used for this study were GreenSeeker and Holl
... Show MoreObjectives Bromelain is a potent proteolytic enzyme that has a unique functionality makes it valuable for various therapeutic purposes. This study aimed to develop three novel formulations based on bromelain to be used as chemomechanical caries removal agents. Methods The novel agents were prepared using different concentrations of bromelain (10–40 wt. %), with and without 0.1–0.3 wt. % chloramine T or 0.5–1.5 wt. % chlorhexidine (CHX). Based on the enzymatic activity test, three formulations were selected; 30 % bromelain (F1), 30 % bromelain-0.1 % chloramine (F2) and 30 % bromelain-1.5 % CHX (F3). The assessments included molecular docking, Fourier-transform infrared spectroscopy (FTIR), viscosity and pH measurements. The efficiency
... Show More
D-mannose sugar was used to prepare [benzoic acid 6-formyl-2,2-dimethyl-tetrahydrofuro[3,4-d][1,3]dioxol-4-yl ester] (compound A). The condensation reaction of folic acid with (compound A) resulted in the formation of new ligand [L]. These compounds were characterized by elemental analysis CHN, atomic absorption A.A, (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for electrospray), molar conductance, and melting point. The new tetradentate ligand [L], reacted with two moles of some selected metal ions and two moles of (2-aminophenol), (metal : ligand : 2-aminophenol) at reflux in water medium to give a series of new complexes of the general formula K2[M2(L)(HA)2] where M= Co(II), Ni(II), Cu(II) and Cd(II). These complexes were characterized by elem
... Show MoreAn Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show More