Abstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to 3.43 dBi at maximum. The antenna size is compacted to a 32 mm × 24 mm using a fractal-shaped MTM when mounted on the INP substrate with a relative permittivity ɛr = 3.106−j0.0314 and a relative permeability µr = 1.548−j0.0907. Finally, the maximum obtained voltage from the proposed antenna is found about 2 V at 2.45 GHz and 2.5 V at 5.8 GHz, where, the corresponding measured equivalent isotropic radiated power is about 2.35 W at 2.45 GHz and 6.12 W at 5.8 GHz.
The structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreCopper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Structural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
The presence of different noise sources and continuous increase in crosstalk in the deep submicrometer technology raised concerns for on-chip communication reliability, leading to the incorporation of crosstalk avoidance techniques in error control coding schemes. This brief proposes joint crosstalk avoidance with adaptive error control scheme to reduce the power consumption by providing appropriate communication resiliency based on runtime noise level. By switching between shielding and duplication as the crosstalk avoidance technique and between hybrid automatic repeat request and forward error correction as the error control policies, three modes of error resiliencies are provided. The results show that, in reduced mode, the scheme achie
... Show MoreThe cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element
... Show MoreCopper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreA huge potential from researchers was presented for enhancing the nonlinear optical response for materials that interacts by light. In this work, we study the nonlinear optical response for chemically prepared nano- fluid of silver nanoparticles in de-ionized water with TSC (Tri-sodium citrate) protecting agent. By the means of self-defocusing technique and under CW 473 nm blue laser, the reflected diffraction pattern were observed and recorded by CCD camera. The results demonstrate that, the Ag nano-fluid shows a good third order nonlinear response and the magnitude of the nonlinear refractive index was in the order of 10−7 cm2/W. We determine the maximum change of the nonlinear refractive index and the related phase shift for the mat
... Show MoreIn this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.