This paper presents theoretical parametric study of the curvature ductility capacity for reinforced concrete column sections. The study considers the behavior of concrete and reinforcing steel under different strain rates. A computer program has been written to compute the curvature ductility taking into account the spalling in concrete cover. Strain rate sensitive constitutive models of steel and concrete were used for predicting the moment-curvature relationship of reinforced concrete columns at different rate of straining. The study parameters are the yield strength of main reinforcement, yield strength of transverse reinforcement, compressive strength of concrete, spacing of ties and the axial load. The results indicated that higher strain rates improve both the curvature ductility and the moment capacity of reinforced concrete column sections.
The theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma
... Show MoreIn practical engineering problems, uncertainty exists not only in external excitations but also in structural parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of portal frames subjected to random ground motions. The North-South component of the El Centro earthquake in 1940 in California is selected as the ground excitation. Using the power spectral density function, the two-dimensional finite element model of the portal frame’s base motion is modified to account for random ground motions. A probabilistic study of the portal frame structure using stochastic finite elements utilizing Monte Carlo simulation
... Show MoreFire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safety in structural concrete is important for building construction. The slow heat transfer and strength loss enables concrete to be effective for fire resistance. Concrete structures withstand when exposed to fire according to: their thermal properties, rate of heating, characteristic properties of concrete mixes and their composition and on the duration of fire, and concerned as thermal property with other factors such as loss of mass which affected by aggregate type, moisture content, and composition of concrete mix. The present research goal is to study the effect of rising temperature on the compressive strength of the rea
... Show MoreFire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safet, IJSR, Call for Papers, Online Journal
The Ground Penetrating Radar (GPR) is frequently used in pavement engineering
for road pavement inspection. The main objective of this work is to validate
nondestructive, quick and powerful measurements using GPR for assessment of subgrade
and asphalt /concrete conditions. In the present study, two different antennas
(250, 500 MHz) were used. The case studies are presented was carried in University
of Baghdad over about 100m of paved road. After data acquisition and radar grams
collection, they have been processed using RadExplorer V1.4 software
implementing different filters with the most effective ones (time zero adjustment and
DC removal) in addition to other interpretation tool parameters.
The interpretatio
The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the
... Show MoreThe study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp
... Show MorePortland cement is considered the most involved product in environmental pollution. It is responsible for about 10% of global CO2 emissions [1]. Limestone dust is a by-product of limestone plants and it is produced in thousands of tons annually as waste material. To fulfill sustainability requirements, concrete production is recommended to reduce Portland cement usage with the use of alternative or waste materials. The production of sustainable high strength concrete by using nanomaterials is one of the aims of this study. Limestone dust in 12, 16, and 20% by weight of cement replaced cement in this study. The study was divided into two parts: the first was devoted to the investigation of the best percentage of replacement of waste
... Show MoreThis research aims to introduce a new technique-off-site and self-form segmental concrete masonry arches fabrication, without the need of construction formwork or centering. The innovative construction method in the current study encompasses two construction materials forms the self-form masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP) composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the extrados of the arch rings under service loadings. An experimental test was conducted on four sophisticated masonry arch specimens. The research parameters were the Keystone thic
... Show More