This paper presents theoretical parametric study of the curvature ductility capacity for reinforced concrete column sections. The study considers the behavior of concrete and reinforcing steel under different strain rates. A computer program has been written to compute the curvature ductility taking into account the spalling in concrete cover. Strain rate sensitive constitutive models of steel and concrete were used for predicting the moment-curvature relationship of reinforced concrete columns at different rate of straining. The study parameters are the yield strength of main reinforcement, yield strength of transverse reinforcement, compressive strength of concrete, spacing of ties and the axial load. The results indicated that higher strain rates improve both the curvature ductility and the moment capacity of reinforced concrete column sections.
The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreThis paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.
The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism
... Show MoreThe Fauqi field is located about 50Km North-East Amara town in Missan providence in Iraq. Fauqi field has 1,640 MMbbl STOIIP, which lies partly in Iran. Oil is produced from both Mishrif and Asmari zones. Geologically, the Fauqi anticline straddles the Iraqi/Iranian border and is most probably segmented by several faults. There are several reasons leading to drilling horizontal wells rather than vertical wells. The most important parameter is increasing oil recovery, particularly from thin or tight reservoir permeability. The Fauqi oil field is regarded as a giant field with approximately more than 1 billion barrels of proven reserves, but it has recently experienced low production rate problems in many of its existing wells. This study
... Show MoreThis paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of
... Show MoreThis paper presents a study (experimentally) for strengthening reinforced concrete (RC) beams with Near-Surface-Mounted (NSM) technique. The use of this technique with CFRP strips or rebars is an efficient technology for increasing the strength for flexure and shear or for repairing damaged reinforced concrete (RC) members. The objective of this research is to study, experimentally, RC beams either repaired or strengthened with NSM CFRP strips and follow their flexural behavior and failure modes. NSM-CFRP strips were used to strengthen three RC beam specimens, one of them was initially strengthened and tested up to failure. Four beam specimens have been initially subjected to preloading to 50% and 80% of ultimate load. Two of the sp
... Show MoreStructural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi
This experimental study demonstrates the gable-reinforced concrete beams’ behavior with several number of openings (six and eight) and posts’ inclination, aimed to find the strength reduction in this type of beam. The major results found are: for the openings extending over similar beam length it is better to increase the number of posts (openings),
This paper demonstrates an experimental and numerical study on the behavior of reinforced concrete (RC) columns with longitudinal steel embedded tubes positioned at the center of the column cross-section. A total of 12 pin-ended square sectional columns of 150 × 150 mm having a total height of 1400 mm were investigated. The considered variables were the steel tube diameters of 29, 58, and 76 mm and the load eccentricity (0, 50, and 150) mm. Accordingly, these columns were divided into three groups (four columns in each group) depending on the load eccentricity (e) to column depth (h) ratio (e/h = 0, 1/3, and 1). For each group, one column was solid (reference), and the other three columns contained steel tubes with hollow rat
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show More