The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of Deep Bayesian Neural Network (DBNN) for the personalized treatment of leukemia cancer has shown a significant tested accuracy for the model. DBNNs used in this study was able to classify images with accuracy exceeding 98.73%. This study depicts that the DBNN can classify cell cultures only based on unstained light microscope images which allow their further use. Therefore, building a bayesian‐based model to great help during commercial cell culturing, and possibly a first step in the process of creating an automated/semiautomated neural network‐based model for classification of good and bad quality cultures when images of such will be available.
Abstract Objectives: This research seeks to highlight one of the important topics artificial intelligence and its impact on education and media. This issue has received considerable attention from international institutions and organizations in order to keep pace with the world's current progress. The study provided an overview of the concept of artificial intelligence, its definitions, its importance and characteristics and its impact on education in general and on the student and teacher in particular, as well as linking the subject of education to the media because social media that is one of the media has a great impact on the academic community. Methods: This study relied on the analytical descriptive curriculum where one of the curr
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show MorePlasma physics and digital image processing technique (DIPT) were utilized in this research to show the effect of the cold plasma (plasma needle) on blood cells. The second order statistical features were used to study this effect. Different samples were used to reach the aim of this paper; the patients have leukemia and their leukocytes number was abnormal. By studying the results of statistical features (mean, variance, energy and entropy), it is concluded that the blood cells of the sample showed a good response to the cold plasma.
The inflammatory reactions cause nasal polyposes (NPs), which contained the paranasal sinuses and the nasal mucous membrane. They consist of recurrent multiple masses originating in the paranasal sinuses then spread from the middle meatus to the nasals cavity, which leads to the nasal blockage that causes the restriction of airflow to the olfactory area. This study aims at clarifying the role of IL-12RB2 polymorphism by using PCR technology in nasal mucosal stem cells in nasal polyps of Iraqi patients and use it as a biomarker. Fifty-eight cases of this study are referred to as nasal surgery, which selected from Dept.of Otolaryngology, Baghdad City, Iraq from May 2013 to January 2014. They were grouped into Control group (022 samples
... Show MoreBackground: Tooth eruption is a localized process in the jaws which exhibits precise timing and bilateral symmetry. Develop within the jaws and their eruption is a complex infancy process during which they move through bone to their functional positions within the oral cavity. For species with more than one set of teeth, eruption of the second set also accomplishes. The key to the successful clinical management of tooth eruption consists of understanding that this process consists largely of the local regulation of alveolar bone metabolism to produce bone resorption in the direction of eruption and shift and formation of bone at the opposite side.The amniotic sac contains a considerable quantity of stem cells. These amniotic stem cells are
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe