Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the reversibility of NP adsorption onto carbonate surfaces was measured using dynamic light scattering (DLS), scanning electron microscope (SEM) images, energy dispersive X-ray spectroscope (EDS), and atomic force microscope (AFM) measurement. Results show that the initial hydrophilicity of the NP and the carbonate rock surface can influence the NPs adsorption onto the rock surfaces. Typically, oppositely charged NP and rock surface are attracted to each other, forming a mono or multilayers of NPs on the rock. Operation conditions including pressure and temperature have shown minor influence on nano-treatment efficiency. Moreover, DLS measurement proved the impact of hydrophilicity on the stability and adsorption trend of NPs. This was also confirmed by SEM images. Further, AFM results indicated that a wide-ranging adsorption scenario of NPs on the carbonate surface exists. Similar results were obtained from the EDS measurements. This study thus gives the first insight into NPs adsorption onto carbonate surfaces at reservoirs conditions.
The effect of thermal treatment on optical constants of pure PMMA and with addition (15 and 35) ml of coumarin at different temperatures (100, 110 and 120) C0 for 1 hour were investigated. Cast method used to prepares films of pure PMMA and PMMA with (15 and 35) of coumarin. UV/VIS spectrometer technique used to measure the absorption spectra for these films. The optical constant (absorption spectra and absorption coefficient) don’t changes after applied temperatures in pure PMMA film but the optical constant (absorption spectra and absorption coefficient) in PMMA with (15 and 35) ml of coumarin increased with applied temperatures. The optical energy gap of pure PMMA and PMMA with (15 and 35) ml of coumarin sl
... Show MoreIn this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66.8% at 2
... Show MoreIn the present study the radon concentration was measured in indoor places by the RAD7 (radon detector) was in some locations at Al-Tuwaitha nuclear site and some surrounding areas for the duration from 13/10/2016 to 2/1/2017 and the measurement of the indoor radon concentration ranged from (4.96±4.4 to 102±25) Bq/m3. The high value of radon has been found at decommissioning directorate /emergency room, which is lower than the action value recommended by the Environmental Protection Agency (EPA) which is (148 Bq/m3) while the lowest value has been founded in central laboratories directorate \ models room. These values were used to calculate the annual effective dose and the health risks for cells bronchial which caused by the inhalatio
... Show MoreRecords of two regionalized variables were processed for each of porosity and permeability of reservoir rocks in Zubair Formation (Zb-109) south Iraq as an indication of the most important reservoir property which is the homogeneity,considering their important results in criterion most needed for primary and enhanced oil reservoirs.The results of dispersion treatment,the statistical incorporeal indications,boxes plots,rhombus style and tangents angles of intersected circles indicated by confidence interval of porosity and permeability data, have shown that the reservoir rocks of Zubair units (LS),(1L) and (DJ) have reservoir properties of high quality,in contrast to that of Zubair units (MS) and (AB)which have reservoir properties of less q
... Show MoreTitanium dioxide TiO2 has been widely utilized in cleaning and sterilizing material for many clinical tools sanitary ware, food tableware and cooking and items for use in hospitals. Titanium dioxide TiO2 non toxicity and long term physical and chemical stability. It has been widely used decomposition of organic compounds and microbial organisms such as cancer cell, viruses and bacteria as well as its potential application in sterilization of medical devices. The aim of the study the effect of titanium dioxide TiO2 on some Gram negative bacteria and study their effects on some virulence factors and chromosomal DNA.In this study, we obtained (E. coli ? Proteus mirabilis, Proteus vulgaris ? Pseudomonas aeruginosa ? Klebsiella pneumonia and Ac
... Show MoreThere is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreAbstract The surface of kaolin was diagnosed by an AFM and the results were shown The height of the highest peak reached by a quantity of Kaolin surface is 2.5 µm, the granules, and their diameter with an average diameter of 666.1nm. Using Kaolin's adsorption properties, erythrosine was removed of its aqueous solution. It was determined that the maximal dye adsorption ranged 36.53–40.61%. The results of using the Freundlich, Langmuir, and Temkin adsorption isotherms revealed that at temperatures of (298,308,318) K, the Freundlich model was followed, the Langmuir model did not match, and the Temkin model could only be partially applied. There is also physical adsorption. One of the three kinetic models of the
... Show More