Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the reversibility of NP adsorption onto carbonate surfaces was measured using dynamic light scattering (DLS), scanning electron microscope (SEM) images, energy dispersive X-ray spectroscope (EDS), and atomic force microscope (AFM) measurement. Results show that the initial hydrophilicity of the NP and the carbonate rock surface can influence the NPs adsorption onto the rock surfaces. Typically, oppositely charged NP and rock surface are attracted to each other, forming a mono or multilayers of NPs on the rock. Operation conditions including pressure and temperature have shown minor influence on nano-treatment efficiency. Moreover, DLS measurement proved the impact of hydrophilicity on the stability and adsorption trend of NPs. This was also confirmed by SEM images. Further, AFM results indicated that a wide-ranging adsorption scenario of NPs on the carbonate surface exists. Similar results were obtained from the EDS measurements. This study thus gives the first insight into NPs adsorption onto carbonate surfaces at reservoirs conditions.
The present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS),respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showed that the adsorption of basic dye followed Freundlich iso
... Show MoreIn this work semi–empirical method (PM3) calculations are carried out by (MOPAC) computational packages have been employed to calculate the molecular orbital's energies for some organic pollutants. The long– chain quaternary ammonium cations called Iraqi Clays (Bentonite – modified) are used to remove these organic pollutants from water, by adding a small cationic surfactant so as to result in floes which are agglomerates of organobentonite to remove organic pollutants. This calculation which suggests the best surface active material, can be used to modify the adsorption efficiency of aniline , phenol, phenol deriviatives, Tri methyl glycine, ester and pecticides , on Iraqi Clay (bentonite) by comparing the theoretical results w
... Show MoreTin dioxide doped silver oxide thin films with different x content (0, 0.03, 0.05, 0.07) have been prepared by pulse laser deposition technique (PLD) at room temperatures (RT). The effect of doping concentration on the structural and electrical properties of the films were studied. Atomic Force Measurement (AFM) measurements found that the average value of grain size for all films at RT decrease with increasing of AgO content. While an average roughness values increase with increasing x content. The electrical properties of these films were studied with different x content. The D.C conductivity for all films increases with increasing x content. Also, it found that activation energies decrease with increasing of AgO content for all films.
... Show MoreBackground: Alterations in the microhardness and roughness are commonly used to analyze the possible negative effects of bleaching products on restorative materials. This in vitro study evaluated the effect of in-office bleaching (SDI pola office +) on the surface roughness and micro-hardness of four newly developed composite materials (Z350XT –nano-filled, Z250XT-nano-hybrid, Z250-mico-hybrid and Silorane-silorane based). Materials and methods: Eighty circular samples with A3 shading were prepared by using Teflon mold 2mm thickness and 10mm in diameter. 20 samples for each material, 10 samples for base line measurement (surface roughness by using portable profillometer, and micro-hardness by usingDigital Micro Vickers Hardness Test
... Show More