Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the reversibility of NP adsorption onto carbonate surfaces was measured using dynamic light scattering (DLS), scanning electron microscope (SEM) images, energy dispersive X-ray spectroscope (EDS), and atomic force microscope (AFM) measurement. Results show that the initial hydrophilicity of the NP and the carbonate rock surface can influence the NPs adsorption onto the rock surfaces. Typically, oppositely charged NP and rock surface are attracted to each other, forming a mono or multilayers of NPs on the rock. Operation conditions including pressure and temperature have shown minor influence on nano-treatment efficiency. Moreover, DLS measurement proved the impact of hydrophilicity on the stability and adsorption trend of NPs. This was also confirmed by SEM images. Further, AFM results indicated that a wide-ranging adsorption scenario of NPs on the carbonate surface exists. Similar results were obtained from the EDS measurements. This study thus gives the first insight into NPs adsorption onto carbonate surfaces at reservoirs conditions.
Quantum gates which are represented by unitary matrices have potentials to implement the reversible logic circuits. M and M+ gates are two well-known quantum gates which are used to synthesize the reversible logic circuits. In this work, we have used behavioral description of these gates, instead of unitary matrix description, to synthesize reversible logic circuits. By this method, M and M+ gates are shown in the truth table form.
This work presents the construction of a test apparatus for air-conditioning application that is flexible in changing a scaled down adsorbent bed modules. To improve the heat and mass transfer performance of the adsorbent bed, a finned-tube of the adsorbent bed heat exchanger was used. The results show that the specific cooling power (SCP) and the coefficient of performance (COP) are 163 W/kg and 0.16, respectively, when the cycle time is 40 min, the hot water temperature is 90oC, the cooling water temperature is 30oC and the evaporative water temperature is 11.4oC.
The purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of ad
... Show MoreIn context of this paper we prepare high purity powder ZnO nanostructures by chemical method at low temperature solution and study the effect off annealing at high temperature, ZnO nanoparticles have been successfully synthesized by chemical method at 0Cᵒ solution. In this method, suddenly reaction is occurred between zinc acetate solution and sodium hydroxide solution at 0Cᵒ, annealing temperature of powder product surfactant plays an important role in morphological changes. The nanostructures have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), differential scanning calorimetry(DSC) and UV-visible .analysis Effect of annealing temperatures on the morphology , structure and optical properties is di
... Show MoreThis paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ∆G, ∆H, and ∆S thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated
Manganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75
... Show MoreThis study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The a
... Show MoreThe role of residues in the adsorption process for removing contaminants from their aqueous solution was highlighted in this study. The adsorption capacity of eggshells were used to remove the methyl orange dye from its aqueous solution. The highest dye adsorption was found to range between (62.30% to 62.33%). The results of using adsorption isotherms (Freundlich, Langmuir, and Temkin) have been revealed that the Freundlich model was followed and that the Langmuir model did not match, as well as the partial applicability of Temkin's model at temperatures (298,308,318) K. The process of adsorption is a physical one. Three kinetic models of the adsorption process were also used, with the results demonstrating the applicability of the pseud
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show More