Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the reversibility of NP adsorption onto carbonate surfaces was measured using dynamic light scattering (DLS), scanning electron microscope (SEM) images, energy dispersive X-ray spectroscope (EDS), and atomic force microscope (AFM) measurement. Results show that the initial hydrophilicity of the NP and the carbonate rock surface can influence the NPs adsorption onto the rock surfaces. Typically, oppositely charged NP and rock surface are attracted to each other, forming a mono or multilayers of NPs on the rock. Operation conditions including pressure and temperature have shown minor influence on nano-treatment efficiency. Moreover, DLS measurement proved the impact of hydrophilicity on the stability and adsorption trend of NPs. This was also confirmed by SEM images. Further, AFM results indicated that a wide-ranging adsorption scenario of NPs on the carbonate surface exists. Similar results were obtained from the EDS measurements. This study thus gives the first insight into NPs adsorption onto carbonate surfaces at reservoirs conditions.
The present study aims to evaluate the biosorption of reactive orange dye by using garden grass. Experiments were carried out in a batch reactor to obtain equilibrium and thermodynamic data. Experimental parameters affecting the biosorption process such as pH, shaking time, initial dye concentrations, and temperature were thoroughly examined. The optimum pH for removal was found to be 4. Fourier transform infrared spectroscopy analysis indicated that the electronegative groups on the surface of garden grass were the major groups responsible for the biosorption process. Four sorption isotherm models were employed to analyze the experimental data of which Temkin and Pyzhey model was found to be most suitable one. The maxim
... Show MoreImproved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
Manganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show MoreBackground: Semen contamination is a detrimental factor in decreasing fertility. Seasonal changes may affect the contamination, too. Objectives: This study was designed to detect semen contamination in ovine and caprine during different seasons. Methods: Six fully mature male sheep and goats were subjected to electro-ejaculator collection twice monthly from February 1, 2022, to January 31, 2023 (Spring, February 1, 2022-April 30, 2022; Summer, May 1, 2022, July 31, 2022; Autumn August 1, 2022, October 31, 2022; Winter November 1, 2022, January 31, 2023), for studying the seasonal effect. A total of 288 semen samples were collected from both species (36 samples from each per season). All samples were subjected to bacterial isolatio
... Show MoreFormulations based on nanomaterials have the ability to reduce the consuming of hazardous pesticides and theirimpact on human health and environment. The present study focused on a comparative investigation of histological effects of nanocapule acetamiprid (NACMP) in vivoand commercial parental bulk form of acetamiprid (ACMP) on albino mice. Nanoformulations of pesticides have the potential to improve food productivity without compromising with the ecosystem. In the present study, nanocapsules containing acetamiprid were prepared from two natural macromolecules, alginate and chitosan. The characterization of the nanocapsules were investigated by Dynamic Light Scattering(DLS), T ransmission Electron Microscopy (TEM) and Atomic force
... Show MoreThe field experiment was conducted with the aim of developing and testing an automatic sprayer for agricultural spray experiments and studying the effect of spray pressure, spray speed and spray height on the spraying process. The effects of the major spraying factors (pressure, speed, and height) on the spraying performance of the automatic sprayer were studied. This study included several traits: First - the drop sizes - Second - the penetration of the spray into the vegetation cover - Third, the spray wasted. The results showed: - First: - Increase in coverage percentage when using the first speed, 2 km / h, which amounted to 26.85%. An increment in the spraying penetration of the vegetation cover was observed at the second speed
... Show MoreAbstract
This paper is an experimental work to determinate the effect of welding velocity and formed arc energy for CO2-MAG fusion weld pool. The input parameters (arc voltage, wire feed speed and gas flow rate) were investigated to find their effects on the weld joint efficiency. Design of experiment with response surface methodology technique was used to build empirical mathematical models for welding velocity and arc energy in term of the input welding parameters. The predicted quadratic models were statistically checked for adequacy purpose by ANOVA analysis. Additionally, numerical optimization was conducted to obtain the optimum values for welding velocity and arc energy. A good agree
... Show MoreThe research aims to monitor and analyze the visual and symbolic features, derived from the Omani heritage, and inspired by the concept of local identity, for a selection of contemporary Omani graphic art works, which represent a mixed, multi-category of research sample, comprising three levels: the works of professional Omani artists, and the works of young artists and specialized students, as well as the work of a number of active academics in the field of graphic theorizing and teaching. The sample is also divided - in terms of technical classification - into a category of works executed using traditional engraving and printing media, and a category of works executed using modern and digital graphic printing media.
Through the da