Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the reversibility of NP adsorption onto carbonate surfaces was measured using dynamic light scattering (DLS), scanning electron microscope (SEM) images, energy dispersive X-ray spectroscope (EDS), and atomic force microscope (AFM) measurement. Results show that the initial hydrophilicity of the NP and the carbonate rock surface can influence the NPs adsorption onto the rock surfaces. Typically, oppositely charged NP and rock surface are attracted to each other, forming a mono or multilayers of NPs on the rock. Operation conditions including pressure and temperature have shown minor influence on nano-treatment efficiency. Moreover, DLS measurement proved the impact of hydrophilicity on the stability and adsorption trend of NPs. This was also confirmed by SEM images. Further, AFM results indicated that a wide-ranging adsorption scenario of NPs on the carbonate surface exists. Similar results were obtained from the EDS measurements. This study thus gives the first insight into NPs adsorption onto carbonate surfaces at reservoirs conditions.
This study was conducted on Lake Hamrin situated in Diyala governorate, focal Iraq, between latitudes 44º 53ʹ 26.16 '- 45º 07 ʹ 28.03ʺ and 34º 04ʹ 24.75ʺ ــ 34º 19ʹ 12.74ʺ . As in this study, the surface area of Hamrin Lake was calculated from satellite images during the period from October 2019 to September 2020, with an average satellite image for each month, furthermore,by utilizing the Normalized Differences Water Index (NDWI), the largest surface area was 264,617 km2 for October and the lowest surface area 140.202 km2 for September. The surface temperature of the lake water was also calculated from satellite images of the Landsat 8 satellite, based on ban
... Show MoreAsmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement inside the reser
... Show MoreThis study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.
... Show MoreNatural bentonite (B) mineral clay was modified by anionic surfactant sodium dodecyl sulfate (SDS) and characterized using different techniques such as: FTIR spectroscopy, scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The bentonite and modified bentonite were used as adsorbents for the adsorption of methyl violet (MV) from aqueous solutions. The adsorption study was carried out at different conditions such as: contact time, pH value and adsorbent weight. The adsorption kinetic described by pseudo– first order and pseudo – second order equilibrium experimental data described by Langmuir, Freundlich and Temkin isotherm models. The thermodynamic parameters standard free energy ( ), standard entropy ( ) standa
... Show More
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreBackground: Denture cleansing was an important step that could prevent the spread of infection and improve a patient's health, the durability of the dentures, and the overall quality of life; therefore, it was necessary to choose a suitable cleanser that, in addition to being effective, did not have an unfavorable effect on the qualities of the denture base resin itself when used for an extended period. For this purpose, this study aimed to evaluate the effect of tea tree oil (TTO) on Candida albicans adhesion and the surface roughness property of poly(methyl methacrylate) denture material after immersion in TTO. Methods: A total of 55 heat-cured acrylic resin specimens were used for C. albicans adherence and surface roughness tests. The
... Show MoreFive Saccharomyces cerevisiae isolated from the ability of chitinase production from the isolates were studied. Quantitative screening appeared that Saccharomyces cerevisiae S4 was the highest chitinase producer specific activity 1.9 unit/mg protein. The yeast was culture in liquid and solid state fermentation media (SSF). Different plant obstanases were used for (SSF) with the chitine, while liquid media contained chitine with the diffrented nitrogen source. The favorable condition for chitinase producers were incubated at 30 ºC at pH 6 and 1% colloidal chitine.
This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS) has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity electrical resistivity and lesser absorption than fiber reinforced
... Show MoreThe varied thermal conductivity (insulation) of silica aerogel with heating for different pH has been investigated, it has been depended on ambient pressure drying method in the preparing silica aerogel samples, also six different pH of samples (1, 2, 3, 7, 8 and 9) were treated under five degree of heating with (50,100,150,200 and 250) ᴼC. This technique is important to test the carry-outs hydrophobic silica to temperature without high-quality material changes in the basic characteristics. The hot-wire technique is used in this work to examine the thermal conductivity, Fourier Transform Infrared Spectroscopy (FTIR) depended to characterize the bonds and their artificial by heating. Resu
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show More