Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the reversibility of NP adsorption onto carbonate surfaces was measured using dynamic light scattering (DLS), scanning electron microscope (SEM) images, energy dispersive X-ray spectroscope (EDS), and atomic force microscope (AFM) measurement. Results show that the initial hydrophilicity of the NP and the carbonate rock surface can influence the NPs adsorption onto the rock surfaces. Typically, oppositely charged NP and rock surface are attracted to each other, forming a mono or multilayers of NPs on the rock. Operation conditions including pressure and temperature have shown minor influence on nano-treatment efficiency. Moreover, DLS measurement proved the impact of hydrophilicity on the stability and adsorption trend of NPs. This was also confirmed by SEM images. Further, AFM results indicated that a wide-ranging adsorption scenario of NPs on the carbonate surface exists. Similar results were obtained from the EDS measurements. This study thus gives the first insight into NPs adsorption onto carbonate surfaces at reservoirs conditions.
The quantum chromodynamics theory approach was taken to study the photonic emission from interaction of quark gluon at high at Bremsstrahlung processes. Strength coupling, quark charge 𝑒𝑞 , flavor number 𝑛𝐹 , thermal energy T of system, fugacity of gluon ƛ𝑔, fugacity of quark ƛ𝑞 , critical temperature 𝑇𝐶 and photons energy 𝐸 are taken to calculate photons rate via the quantum system. Photons emission rate studies and calculates via high energy 400MeV to 650 MeV using flavor number 3 and 7 for 𝑢̅𝑔 → 𝑑̅𝑔𝛾 and 𝑐𝑔 → 𝑠𝑔𝛾 systems at bremsstrahlung processes with critical temperature (𝑇𝑐 = 190 and 196) MeV with photons energy (1-10) GeV. The confinement and de-confineme
... Show MoreThe quantum chromodynamics theory approach was taken to study the photonic emission from interaction of quark gluon at high at Bremsstrahlung processes. Strength coupling, quark charge 𝑒𝑞 , flavor number 𝑛𝐹 , thermal energy T of system, fugacity of gluon ƛ𝑔, fugacity of quark ƛ𝑞 , critical temperature 𝑇𝐶 and photons energy 𝐸 are taken to calculate photons rate via the quantum system. Photons emission rate studies and calculates via high energy 400MeV to 650 MeV using flavor number 3 and 7 for 𝑢̅𝑔 → 𝑑̅𝑔𝛾 and 𝑐𝑔 → 𝑠𝑔𝛾 systems at bremsstrahlung processes with critical temperature (𝑇𝑐 = 190 and 196) MeV with photons energy (1-10) GeV. The confinement and de-confineme
... Show MoreThe effect of the tensor term in the Skyrme interaction has been estimated in calculating the static and dynamic nuclear properties in sd and fp-shell model spaces nuclei. The nuclear shell gaps have been studied with different Skyrme parameterizations; Skxta and Skxtb with tensor interaction, SkX, SkM, and SLy4 without tensor interaction, and Skxcsb with consideration of the effect of charge symmetry breaking. We have examined the stability of N = 28 for 42Si and 48Ca. The results showed that the disappearance of the magicity occurs in the shell closure of 42Si. Furthermore, excitation energy, quadrupole deformation, neutron separation energy, pairing energy, and density profile have also been calculated. Quadrupole deformation indicates a
... Show MoreAbstract
Heavy-duty diesel vehicle idling consumes fossil fuel and reduces atmospheric quality at idle period, but its restriction cannot simply be proscribed. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from DI multi-cylinders Fiat diesel engine. Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), smoke opacity, carbon dioxide (CO2) and noise have been reported, when three EGR ratios (10, 20 and 30%) were added to suction manifold.
CO2 concentrations increased with increasing idle time and engine idle speed, but it didn’t show clear effect for IT adva
... Show MoreThis study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l
... Show MoreThe subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreBackground:The technology of nanoparticles has been expanded to many aspects of modern life. Titanium dioxide nanoparticles were of many nanomaterials utilized in biomedical applications. The interactions between nanoparticles and proteins are believed to be the base for the biological effect of the nanoparticles. The oxidation reaction of many substances is catalyzed by oxidizing enzymes called peroxidases. The activity of salivary peroxidase is elevated with periodontal diseases. the aim ofthis study is to examine the action of titanium dioxide nanoparticles on salivary peroxidase activity.Material and method75 participants were enrolled in this study—Periodontitis group with 44 participants and the non-periodontitis group with 31 pa
... Show MoreOwing to their cost-effectiveness and the natural abundance of magnesium, magnesium-ion batteries (MIBs) were introduced as encouraging alternatives to Lithium-ion batteries. Following the successful synthesis of carbon nano-tube, its B and N doped derivatives which were doped with B and N enjoyed the attention of researchers as novel anode materials (AM) for MIBs. Here, we investigated a BC2N nano-tube (BC2NNT) as an encouraging AM for MIBs. To have a deeper understanding of the electrochemical properties, cycling stability, specific capacity (SC) and the adsorption behavior of this nano-tube, first-principles density functional theory computations were performed. By performing NMR calculations, we identified two types of non-aromatic hexa
... Show More