Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising technology for a wide range of ocean monitoring applications. The UWSNs suffer from unique challenges of the underwater environment, such as dynamic and sparse network topology, which can easily lead to a partitioned network. This results in hotspot formation and the absence of the routing path from the source to the destination. Therefore, to optimize the network lifetime and limit the possibility of hotspot formation along the data transmission path, the need to plan a traffic-aware protocol is raised. In this research, we propose a traffic-aware routing protocol called PG-RES, which is predicated on the ideas of Pressure Gradient and RESistance concept. The proposed
... Show MoreThe Bi2Se3 compound was synthesis by fusing initial compounds consisting of
extra pure elements in stoichiometric ratio from elements compound, charged inside
quartz ampoule. The crystal growth of Bi2Se3 carried out using Brighaman technique
process from melting f (Bi+Se ) at temperature of 810 ºC for about 48 hrs. Single crystal
of Bi2Se3 has been grown in direction (211) after slow cooling on account of heat
gradient to zone furnaces at cooling rate (1-3) C/hr. The structure study of the compound
was determined by x-ray diffraction technique, which it has bismuthinite structure and
orthorhombic unit cell with lattice parameters of a=10.2678 Å, b=11.2392 Å and
c=5.1737 Å
planning is among the most significant in the field of robotics research. As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri
... Show MoreThis paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging.
According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators
... Show MoreThis research is concerned with the re-analysis of optical data (the imaginary part of the dielectric function as a function of photon energy E) of a-Si:H films prepared by Jackson et al. and Ferlauto et al. through using nonlinear regression fitting we estimated the optical energy gap and the deviation from the Tauc model by considering the parameter of energy photon-dependence of the momentum matrix element of the p as a free parameter by assuming that density of states distribution to be a square root function. It is observed for films prepared by Jackson et al. that the value of the parameter p for the photon energy range is is close to the value assumed by the Cody model and the optical gap energy is which is also close to the value
... Show MoreAn experimental and theoretical analysis was conducted for simulation of open circuit cross flow heat
exchanger dynamics during flow reduction transient in their secondary loops. Finite difference
mathematical model was prepared to cover the heat transfer mechanism between the hot water in the
primary circuit and the cold water in the secondary circuit during transient course. This model takes under
consideration the effect of water heat up in the secondary circuit due to step reduction of its flow on the
physical and thermal properties linked to the parameters that are used for calculation of heat transfer
coefficients on both sides of their tubes. Computer program was prepared for calculation purposes which
cover a