Schiff bases of Ceftizoxime sodium were synthesized in an attempt to improve the antimicrobial spectrum of Ceftizoxime. Aminothiazole ring of Ceftizoxime is linked directly through an imino group to different aromatic aldehydes reacted by nucleophilic addition using trimethylamine (TEA), as a catalyst and refluxed in methanol. The antimicrobial activity was evaluated for such Schiff bases using disc diffusion method. Molecular docking was conducted on certain penicillin-binding proteins (PBPs) and carboxypeptidases using 1- click docking software. Schiff bases of Ceftizoxime were prepared with reasonable yields and their chemical structures were confirmed by spectral analysis (FTIR, 1H-NMR) and elemental microanalysis (CHNS). The antibacterial evaluation of the new Schiff bases of Ceftizoxime showed better antibacterial activities when compared with Ceftizoxime sodium. Molecular docking has recorded lower docking scores of all Schiff bases in comparison with Ceftizoxime sodium. This means that they needed less energy of binding with PBPs and carboxypeptidases and hence have better bioactivities. This chemical modification may afford newer cephalosporins having Schiff bases at the aminothiazole ring of improved activities.
This research include synthesized and characterization the compound [I] by reaction terephthaldehyde , mercaptoacetic acid and thiosemicarbazide with concentrated sulfuric acid then this compound reaction with ethyl chloroacetate and sodium acetate to product ester compound [II],the latter compound reaction with hydrazine hydrate to synthesized acid hydrazide [III] after that reaction with 4-alkoxy benzaldehyde[IV]n to synthesized Schiff bases compounds [V]n, the compound [VI] synthesized via reaction compound [I] with chloroacetic acid and sodium acetate then the compound[VI] reaction with 2-phenylenediamine in 4 N hydrochloric acid to product benzimidazole compound[VII]. The compounds characterized by melting points, FTIR and 1HNMR spectr
... Show MoreIn this work, some new pyrazole derivatives were prepared through the reaction of the diazonium salt of metoclopramide with acetylacetone to give 5-chloro-N-(2-(diethylamino)ethyl)-4-((2,4-dioxopentan-3-yl) diazenyl)-2-methoxybenzamide (1) in 80% yield. Compound 1 was then reacted with some hydrazine derivatives to afford the corresponding pyrazole derivatives in 75-93% yields. Some new azo compounds (6-10) were also prepared in 77-95% yields by treatment of the diazonium salt of metoclopramide with some phenol and aniline derivatives. The prepared compounds were characterized using FT-IR and 1H NMR spectroscopy. Some of these compounds were
... Show MoreA series of new copolyimides containing pendant 1,3,4-oxadiazole moiety were synthesized via multisteps. In the first step five N-(5-substituted-1,3,4-oxadiazole-2-yl)maleamic acids were prepared via reaction of maleic anhydride with 2-amino-5-substituted-1,3,4-oxadiazoles. The obtained amic acids were dehydrated in the second step affording the corresponding N-(5-substituted-1,3,4-oxadiazole-2-yl) maleimides. In the third step the newly synthesized maleimides were introduced successfully in free radical copolymerization reaction with four vinylic monomers including acrylo nitrile, methacrylonitrile, methyl acrylate and methyl meth acrylate respectively producing twelve new copolymers having different physical properties which may serve
... Show More2-Amino-5-aryl- 1,3-thiazole-4-carboxylic acid (A1-A3) were synthesized from the reaction of various aromatic aldehyde with dichloro acetic acid and thiourea. The synthesis of 2-[[(Saminosulfinim-idoyl)(aryl)methyl](benzoyl)amino]-5-aryl-1,3-thiazole-4-carboxylic acid (A22-A30) was perfomed starting from (A1-A3) by two steps using Schiff's base (A4-A12) prepared from the reactant compounds (A1-A3) with different aromatic aldehyde. Finally two types of imide derivatives were obtained from reactant compounds (A1-A3) with malic anhydride (A31-A33) and phthalic anhydride (A34-A36) in the presence of glacial acetic acid. All proposed structures were supported by FT-IR and UV-Visible spectroscopic data.
Binuclear metal complexes of the metal ions Fe (II), Co (II), Ni (II) and Cu (II) were synthesized by the reaction of these metal ions with the imine of benzidine (H2L) as a primary ligand and o-phenylenediammine (OPD) as a secondary ligand in a molar ratio of 2:2:1. The prepared complexes were characterized using CHN elemental analysis, FT-IR, UV-visible, molar conductivity, magnetic susceptibility and TGA-DTA thermogravimetric analysis. All the prepared complexes showed apparent stability and could be stored for months without any appreciable change. According to the results obtained by elemental and spectral analyses, a tetrahedral structure is suggested for all the prepared complexes, except for the copper complex which showed
... Show MoreIn this research, new series of Furo-2-quinolone [FQ] compounds have been synthesized. These novel [FQ] compounds were prepared from coumarin derivatives (Furocoumarins: psoralen and isopsoralen).Identifications of these FQ compounds were performed by using infrared spectrum (I.R), Ultraviolet spectrum (U.V) and Nuclear Magnetic Resonance spectrum (H1-NMR) besides some physical data. The cytotoxic screening involves ;using HEP-2 cell line which gave differential responses against tested compounds : 4,6 Dimethyl furo[2, 3-g] coumarin (C1), 1-(2`, 4`, Dimethoxy benzylideneimino)-2,6-dimethyl Furo [2, 3-g] quinoline-2-one (C3) and the angular psoralen of the same derivative
... Show More
CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.
5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM an
... Show MoreSchiff base ligand (H2CANPT) was prepared by two steps: first, by the condensation of curcumin with 4-amino antipyrin produces4,4'-(((1E,3Z,5Z,6E)-1,7-bis(4-hydroxy-3- methoxyphenyl)hepta-1,6-diene-3,5-diylidene)bis(azanylylidene))bis(1,5-dimethyl-2-phenyl- 1,2-dihydro-3H-pyrazol-3-one) (CANP). Second, by the condensation of (CANP) with L-tyrosine produces2,2'-(((3Z,3'Z)-(((1E,3Z,5Z,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta 1,6-diene-3,5-diylidene)bis(azanylylidene))bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-H-pyrazole- 4-yl-3-ylidene))bis(azanylylidene))bis(3-(4-hydroxyphenyl)propanoic acid) (H2CANPT). The resulted Schiff comported as hexadentate coordinated with (N4O2) atoms, then it was treated with some transition and non-transaction met
... Show MoreThe work includes synthesis of 1,2,3-triazoles via click conditions and using the microwave irradiation starting from two synthesized azides: 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide (5) and perfluorobutylethyl azide (10) and different terminal alkynes. It also includes microwave enhanced synthesis of tetrazoles via the reaction of two synthesized azides i.e., perfluorobutylethyl azide (10) and 1,5-diazidopentane (13) with benzoyl cyanide. Most of the prepared compounds have been characterized by: TLC, FT-IR, 1H NMR, 13C NMR, LC-MS and microelemental analysis
Number of new polyester and polyamide are prepared as derivatives from 5,5`-(1,4-phenylene)-bis-(1,3,4-thiadiazole-2-amine) [C1], three series of heterocyclic compounds were synthesized.The first series includes the Schiff base [C2] prepared from the reaction between compound [C1] with p-hydroxy benzaldehyde in presence of acetic acid and absolute ethanol , then these derivatives have reaction with maleic anhydride , phthalic anhydride and sodium azide, respectively to obtain the compounds [C3-5] contaning (oxazepine and tetrazole) rings.The third series of compounds [C1-5] has transformed to their polymers [C6-15] by reaction with adipoyl chloride and glutroyl chloride , respectively. The reaction was followed by T.L.C and ident
... Show More