There continues to be a need for an in-situ sensor system to monitor the engine oil of internal combustion engines. Engine oil needs to be monitored for contaminants and depletion of additives. While various sensor systems have been designed and evaluated, there is still a need to develop and evaluate new sensing technologies. This study evaluated Terahertz time-domain spectroscopy (THz-TDS) for the identification and estimation of the glycol contamination of automotive engine oil. Glycol contamination is a result of a gasket or seal leak allowing coolant to enter an engine and mix with the engine oil. An engine oil intended for use in both diesel and gasoline engines was obtained. Fresh engine oil samples were contaminated with four levels of glycol (0 ppm, 150 ppm, 300 ppm, and 500 ppm). The samples were analyzed with THz-TDS and converted to frequency domain parameters of refractive index and absorption coefficient. While both parameters showed potential, the absorption coefficient had the best potential and was able to statistically discriminate among the four contamination levels.
The characterizations of reservoir require reliable knowledge of certain fundamental reservoir properties. Log measurements can define or at least infer these properties: resistivity, porosity, shale volume, lithology, and water, oil, or gas saturation and permeability. The current study represents evaluation of petrophysical properties in well LU-12 for Zubair Formation in Luhais Oil Field, southern Iraq. The petrophysical evaluation was based on geophysical well logs data to delineate the reservoir characteristics of Zubair Formation. The available geophysical well logs such as (sonic, density, neutron, gamma ray, SP, and resistivity logs) are digitized using the Didger software. The environmental corrections and petrophysical paramete
... Show MoreThe detailed data of the Vp/Vs ratio and porosity logs were used to detect the Oil-Water Contact Zone (OWCZ) of Nahr Umr sandstone and Mishrif limestone reservoir formations in Kumiat (Kt) and Dujaila (Du) oil fields, southeastern Iraq. The results of OWC were confirmed using P-wave, Resistivity, and Water Saturation (Sw) logs of Kt-1 and Du-1 wells. It was found that the values of the oil-water contact zone thickness in Nahr Umr sandstone and Mishrif limestone were approximately one meter and eight meters, respectively. These results suggest that the OWCZ is possibly thicker in the carbonate rock than clastic rock formations. The thickness of OWCZ in the clastic rocks changed from one part to another, depending on several factors includ
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along
... Show MoreNew nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreBackground: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreAbstract
That Iraq's dependence on the revenues of the oil product in financing its development programs and growth rates , Making the economy affected by external forces represented by fluctuations in crude oil prices in the global market, Which is directly reflected on the performance and efficiency of the Iraqi economy.
The study adopted its objectives to analyze the time series for the period (1988 - 2015) through the use of standard and statistical methods, Four standard models were estimated to reach those targets, Where the results of the stability test showed instability of most variables at their original level, But to achieve stability when taking the first differences, While the result
... Show MoreReservoir characterization requires reliable knowledge of certain fundamental properties of the reservoir. These properties can be defined or at least inferred by log measurements, including porosity, resistivity, volume of shale, lithology, water saturation, and permeability of oil or gas. The current research is an estimate of the reservoir characteristics of Mishrif Formation in Amara Oil Field, particularly well AM-1, in south eastern Iraq. Mishrif Formation (Cenomanin-Early Touronin) is considered as the prime reservoir in Amara Oil Field. The Formation is divided into three reservoir units (MA, MB, MC). The unit MB is divided into two secondary units (MB1, MB2) while the unit MC is also divided into two sec
... Show MoreThe study intends to well logs interpretation to determine the petrophysical parameters of Euphrates Formations in Ajeel Oil Field. The petrophysical properties have been determined from well logging, Euphrates Formation in terms of reservoirs units, consist of two Petrophysical properties. Total porosity, effect porosity and secondary porosity have been calculated from neutron, density, and sonic logs. secondary porosity is high and it's resulted from diagenesis processes in the formation. From RHOB-NPHI and N/M cross plot, Euphrates Formation composed mainly from Limestone and dolomite with nodules of anhydrite. Dhiban Formation composed mainly of anhydrite, so it's represented the cap rocks for Euphrates Reservoir were recognized base
... Show More