There continues to be a need for an in-situ sensor system to monitor the engine oil of internal combustion engines. Engine oil needs to be monitored for contaminants and depletion of additives. While various sensor systems have been designed and evaluated, there is still a need to develop and evaluate new sensing technologies. This study evaluated Terahertz time-domain spectroscopy (THz-TDS) for the identification and estimation of the glycol contamination of automotive engine oil. Glycol contamination is a result of a gasket or seal leak allowing coolant to enter an engine and mix with the engine oil. An engine oil intended for use in both diesel and gasoline engines was obtained. Fresh engine oil samples were contaminated with four levels of glycol (0 ppm, 150 ppm, 300 ppm, and 500 ppm). The samples were analyzed with THz-TDS and converted to frequency domain parameters of refractive index and absorption coefficient. While both parameters showed potential, the absorption coefficient had the best potential and was able to statistically discriminate among the four contamination levels.
Coal fines are highly prone to be generated in all stages of Coal Seam Gas (CSG) production and development. These detached fines tend to aggregate, contributing to pore throat blockage and permeability reduction. Thus, this work explores the dispersion stability of coal fines in CSG reservoirs and proposes a new additive to be used in the formulation of the hydraulic fracturing fluid to keep the fines dispersed in the fluid. In this work, bituminous coal fines were tested in various suspensions in order to study their dispersion stability. The aggregation behavior of coal fines (dispersed phase) was analyzed in different dispersion mediums, including deionized-water, low and high sodium chloride solutions. Furthermore, the effect of Sodium
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
The production companies in the Iraqi industry environment facing many of the problems related to the management of inventory and control In particular in determining the quantities inventory that should be hold it. Because these companies adoption on personal experience and some simple mathematical methods which lead to the identification of inappropriate quantities of inventory.
This research aims to identify the economic quantity of production and purchase for the Pepsi can 330ml and essential components in Baghdad soft drinks Company in an environment dominated by cases of non ensure and High fluctuating as a result of fluctuating demand volumes and costs ass
... Show MoreIn this work lactone (1) was prepared from the reaction of p-nitro phenyl hydrazine with ethylacetoacetate, which upon treatment with benzoyl chloride afforded the lactame (2). The reaction of (2) with 2-amino phenol produced a new Schiff base (L) in good yield. Complexes of V(IV), Zr(IV), Rh(III), Pd(II), Cd(II) and Hg(II) with the new Schiff base (L) have been prepared. The compounds (1, 2) were characterized by FT-IR and UV spectroscopy, as well as characterizing ligand (L) by the same techniques with elemental analysis (C.H.N) and (1H-NMR). The prepared complexes were identified and their structural geometries were suggested by using elemental analysis (C.H.N), flame atomic absorption technique, FT-IR and UV-Vis spectroscopy, in additio
... Show More