Preferred Language
Articles
/
6xbhuosBVTCNdQwCRNgm
Detection and prediction of Sitophilus oryzae infestations in triticale via visible and near-infrared spectral signatures
...Show More Authors

Triticale is a hybrid of wheat and rye grown for use as animal feed. In Florida, due to its soft coat, triticale is highly vulnerable to Sitophilus oryzae L. (rice weevil) and there is interest in development of methods to detect early-instar larvae so that infestations can be targeted before they become economically damaging. The objective of this study was to develop prediction models of the infestation degree for triticale seed infested with rice weevils of different growth stages. Spectral signatures were tested as a method to detect rice weevils in triticale seed. Groups of seeds at 11 different levels (degrees) of infestation, 0–62%, were obtained by combining different ratios of infested and uninfested seeds. A spectrophotometer was used to measure reflectance between 400 and 2500 nm wavelength for seeds that had been infested at different levels with six different growth stages from egg to adult. The reflectance data were analyzed by several generalized linear regression and classification methods. Different degrees of infestation were particularly well correlated with reflectances in the 400–409 nm range and other wavelengths up to 967 nm, although later growth stages could be detected more accurately than early infestation. Stepwise variable selection produced the lowest mean square differences and yielded a high R² value (0.988) for the 4th instars, pupae and adults inside the seed. Models were developed to predict the level of infestation in triticale by rice weevils of different growth stages. Overall, this study showed a great potential of using reflectance spectral signatures for detection of the level of infestation of triticale seed by rice weevils of different growth stages

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Jordanian Journal Of Computers And Information Technology
BEYOND WORDS: HARNESSING SPEECH SOUND FOR SPEAKER AGE AND GENDER DETECTION USING 1D CNN ARCHITECTURE WITH SELF-ATTENTION MECHANISM
...Show More Authors

Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Recovering Time-Dependent Coefficients in a Two-Dimensional Parabolic Equation Using Nonlocal Overspecified Conditions via ADE Finite Difference Schemes
...Show More Authors

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 37th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Tsallis entropy as a biomarker for detection of Alzheimer's disease
...Show More Authors

View Publication
Scopus (32)
Crossref (20)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Practical Study for the Properties of Hueckel Edge Detection Operator
...Show More Authors

View Publication
Crossref (4)
Crossref
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (48)
Scopus
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
Rapid Detection of Aspergillus flavus isolates producing aflatoxin using UV light on different culture media
...Show More Authors

This study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Amultifaceted Review Journal In The Field Of Pharmacy
Zwitterionic ion chromatography coupled with ultraviolet detection for the quantification of 2-deoxyguanosine in human serum
...Show More Authors

Scopus (18)
Scopus
Publication Date
Sun Jan 01 2023
Journal Name
Iraqi Journal Of Biotechnology
Molecular Detection of Candida spp. Isolated from Female Patients Infected with COVID-19 in Baghdad City
...Show More Authors

Abstract: Coronavirus disease 2019 (COVID-19) is an infectious disease with severe acute respiratory syndrome and first recognized in Wuhan, China, and it has since spread to the world, resulting in the coronavirus pandemic to 2020. The present study aimed to evaluate Molecular study of some types of vaginal fungi isolated from recovered women from Covid-19 in Baghdad governorate. The study was conducted on 213 samples collected between December 2021 and March 2022, where the number of positive samples reached 188 with percentage 88.26%, while the number of negative samples reached 25 with percentage 11.73% by taking vaginal swabs from various female patients in Al- Kadhimiya Teaching Hospital. Three of Candida spp. were isolated: Candida a

... Show More
Publication Date
Mon Sep 15 2014
Journal Name
Journal Of Clinical And Biomedical Sciences
Detection of EGFR Mutations in Bronchial Wash from Iraqi patients with nonsmall Cell Lung Cancer (NSCLC)
...Show More Authors

Background: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (

... Show More
Crossref