Preferred Language
Articles
/
6xbhuosBVTCNdQwCRNgm
Detection and prediction of Sitophilus oryzae infestations in triticale via visible and near-infrared spectral signatures
...Show More Authors

Triticale is a hybrid of wheat and rye grown for use as animal feed. In Florida, due to its soft coat, triticale is highly vulnerable to Sitophilus oryzae L. (rice weevil) and there is interest in development of methods to detect early-instar larvae so that infestations can be targeted before they become economically damaging. The objective of this study was to develop prediction models of the infestation degree for triticale seed infested with rice weevils of different growth stages. Spectral signatures were tested as a method to detect rice weevils in triticale seed. Groups of seeds at 11 different levels (degrees) of infestation, 0–62%, were obtained by combining different ratios of infested and uninfested seeds. A spectrophotometer was used to measure reflectance between 400 and 2500 nm wavelength for seeds that had been infested at different levels with six different growth stages from egg to adult. The reflectance data were analyzed by several generalized linear regression and classification methods. Different degrees of infestation were particularly well correlated with reflectances in the 400–409 nm range and other wavelengths up to 967 nm, although later growth stages could be detected more accurately than early infestation. Stepwise variable selection produced the lowest mean square differences and yielded a high R² value (0.988) for the 4th instars, pupae and adults inside the seed. Models were developed to predict the level of infestation in triticale by rice weevils of different growth stages. Overall, this study showed a great potential of using reflectance spectral signatures for detection of the level of infestation of triticale seed by rice weevils of different growth stages

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 26 2023
Journal Name
Journal Of Contemporary Medical Sciences
Molecular detection of mononucleotide biomarkers of microsatellite instability in sporadic colorectal carcinoma patients with clinicopathological correlation
...Show More Authors

Objectives: To identify the frequency and types of microsatellite instability among a group of sporadic CRC patients and to correlate the findings with clinicopathological characteristics. Methods: During an 8-month period, all patients with sporadic CRC who attended to two teaching hospitals in Baghdad, Iraq were recruited to this cross-sectional study regardless of age, sex, ethnicity, or tumor characteristics. Demographic, clinical, and histopathological features were recorded. DNA was extracted from FFPE-blocks of the resected tumors and normal tissues. PCR amplification of five microsatellite mononucleotide repeat loci (BAT25, BAT26, NR-21, NR-24, and MONO-27) and 2 pentanucleotide repeat control markers (Penta C and Pent

... Show More
View Publication
Clarivate Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Detection of FOXP-3 Expression in a Sample of Iraqi Cervical Cancer Patients Using Immunohistochemistry Technique
...Show More Authors

     This paper aims to find out if FOXP-3 was expressed in samples from Iraqi cervical cancer patients. Expression of FOXP-3 was detected in 55 cervical tissue samples by immunohistochemistry. Since thirty-five cases of aggressive cervical cancer were included, along with 20 normal samples used as controls. The nucleus and cytoplasm levels of FOXP-3 were counted, considering the ratio of positive cells and intensity. FOXP3 cytoplasmic staining was found in 27 out of 35 cases. Only 11 out of 35 samples displayed nuclear lymphocyte staining. Furthermore, four samples expressed this marker in both the nuclear and cytoplasm of the cervical cells. There is a highly significant difference in FOXP3 expression in the cytoplasm of

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Detection of BRCA1and BRCA2 mutation for Breast Cancer in Sample of Iraqi Women above 40 Years
...Show More Authors

Breast cancer is the commonest cancer affecting women worldwide. Different studies have dealt with the etiological factors of that cancer aiming to find a way for early diagnosis and satisfactory therapy. The present study clarified the relationship between genetic polymorphisms of BRCA1 & BRCA2 genes and some etiological risk factors among breast cancer patients in Iraq. This investigation was carried out on 25 patients (all were females) who were diagnosed as breast cancer patients attended AL-Kadhemya Teaching Hospital in Baghdad and 10 apparently healthy women were used as a control, all women (patients and control) aged above 40 years. The Wizard Promega kit was used for DNA isolation from breast patients and normal individuals. B

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2025
Journal Name
Iraqi Journal Of Science
Intrusion Detection Approach Based on DNA Signature
...Show More Authors

View Publication
Publication Date
Fri Feb 17 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Vehicles Detection System at Different Weather Conditions
...Show More Authors

The importance of efficient vehicle detection (VD) is increased with the expansion of road networks and the number of vehicles in the Intelligent Transportation Systems (ITS). This paper proposes a system for detecting vehicles at different weather conditions such as sunny, rainy, cloudy and foggy days. The first step to the proposed system implementation is to determine whether the video’s weather condition is normal or abnormal. The Random Forest (RF) weather condition classification was performed in the video while the features were extracted for the first two frames by using the Gray Level Co-occurrence Matrix (GLCM). In this system, the background subtraction was applied by the mixture of Gaussian 2 (MOG 2) then applying a number

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jan 10 2022
Journal Name
Iraqi Journal Of Science
Genetic Algorithm based Clustering for Intrusion Detection
...Show More Authors

Clustering algorithms have recently gained attention in the related literature since
they can help current intrusion detection systems in several aspects. This paper
proposes genetic algorithm (GA) based clustering, serving to distinguish patterns
incoming from network traffic packets into normal and attack. Two GA based
clustering models for solving intrusion detection problem are introduced. The first
model coined as handles numeric features of the network packet, whereas
the second one coined as concerns all features of the network packet.
Moreover, a new mutation operator directed for binary and symbolic features is
proposed. The basic concept of proposed mutation operator depends on the most
frequent value

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Copy Move Forgery Detection Using Forensic Images
...Show More Authors

     Digital images are open to several manipulations and dropped cost of compact  cameras and mobile phones due to the robust image editing tools. Image credibility is therefore become doubtful, particularly where photos have power, for instance, news reports and insurance claims in a criminal court. Images forensic methods therefore measure the integrity of image  by apply different highly technical methods established in literatures. The present work deals with copy move forgery images of Media Integration and Communication Center Forgery (MICC-F2000) dataset for detecting and revealing the areas that have been tampered portion in the image, the image is sectioned into non overlapping blocks using Simple

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Crossref
Publication Date
Tue Aug 23 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Face mask detection based on algorithm YOLOv5s
...Show More Authors

Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on

... Show More
Publication Date
Wed Sep 22 2021
Journal Name
Samarra Journal Of Pure And Applied Science
Toward Constructing a Balanced Intrusion Detection Dataset
...Show More Authors

Several Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff

... Show More
View Publication
Crossref (6)
Crossref