Abstract Candida albicans is a commensal fungal pathogen that grows in yeast and hyphal forms in the human gut. C. albicans causes mucosal and cutaneous diseases that can result in significant mortality following systematic infections and it also exhibits drug resistance. Zebrafish have been an excellent model to investigate C. albicans infections because of their transparency and the availability of many transgenic lines. However, there is a limitation in using zebrafish as a model because the fish embryos cannot survive at 37°C therefore it is not suitable for studying Candida infections at physiological relevant human body temperature. In this thesis, the normal embryonic development of Arabian killifish (A. dispar) is investigated, revealing that embryogenesis was divided into 32 stages based on diagnostic patterns of development. A. dispar can also found to tolerate a wide range of temperatures and salinities. This suggests that A. dispar could be developed as a novel model to investigate host-pathogen interactions. The tolerance of A. dispar to high temperatures may in part be attributable to brown pigment cells with a highly fluorescent character that may have developed to allow the fish to adapt to live within extreme environmental conditions with strong sunlight and a wide range of temperatures (Chapter 3). In terms of Candida infections, this study examined A. dispar as a model to test C. albicans pathogenicity. The survival of A. dispar embryos following Candida infection showed a dose dependent relationship. We also found that A. dispar can survive longer than zebrafish after infection. Furthermore, C. albicans cells were observed to undergo a transition from yeast to hyphae at 37°C. An investigation of the ability of mutant strains of C. albicans with defects in cell wall mannosylation revealed a significant impact on virulence, host mortality, and the fishes’ immune response. The present study found that although the deletion of O- and N-mannan from the cell wall of C. albicans, affected fungal burden (attenuation), and the survival of the infected embryos per se was significantly decreased in the infections of the mutant strains compared to the WT. This data confirms the importance of the mannosylation state of the cell wall in triggering an immune recognition event (Chapter 4). A. dispar is also shown to be suitable for studying the effectiveness of 3 | P a g e antifungals. Fluconazole treatment of infected embryos and eggs promoted greater rates of survival at high doses, alongside a significant reduction of C. albicans CFUs (Chapter 4). When looking at the Candida-host interaction, we directly observed phagocytosed yeast cells within macrophages. Various detection methods were used to follow macrophages and neutrophils including Western blotting, immunostaining and histological staining (Sudan black and FITC-tyramide) allowing the monitoring of the time course of the immune cells. A biphasic response of macrophages was detected by L-plastin Western blotting, suggesting activation of two different type of macrophage: activated macrophage (M1) and alternative macrophage (M2). We also assayed reactive oxygen species (ROS) within infected embryos using a fluorescent probe (H2DCFDA), revealing the accumulation of the fluorescent probe at the sites of infection. Quantitative and qualitative analyses of the oxidative and immune response using the H2DCFDA and qPCR were also accomplished within A. dispar embryos after infection with both the WT and mutant strains of Candida albicans (WT, pmr1∆, mnt1-mnt2∆, and och1∆). The results confirmed that the mutant strains did not activate a host oxidative stress response nor immune cell accumulation when compared to WT, suggesting that the immune response is less activated against these mutants. Finally, a new transgenic line of A. dispar fish was developed using Betaactin-DsR-LoxP-GFP. The new transgenic A. dispar is suggested to be an ideal model for real time observation of host-pathogen interactions and for investigation of molecular functions of the immune response. Overall these results improve our understanding of the use of a new transparent fish model to study fungal pathogenesis and demonstrates the potential advantages of using this species in future studies of bacterial, fungal and viral pathogens at a physiologically relevant temperature for human infection. Such a model could lead us to investigate in more depth the key interactions between pathogens and their host and permit the screening and development of new antifungal therapies (that might target the pathogens directly or target the host immune system). View full metadata
The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
The performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for perform
... Show MoreA concept of indoor solar illumination is described and simulated. The solar illumination system is composed of a tracking primary reflector, a selective secondary reflector, a visible light guide and a scattering solid glass tube fixture. Each part of the solar illumination system is optically suited and compatible with other parts to realize high efficiency. The simulation is conducted for Baghdad city for a library hall. Two major days over a year are chosen to investigate the illumination system for acceptable visible light level for reading hall. The two days are: summer solstice day and winter solstice day at 8:00 AM and 12:00 PM for each. Research results showed that the design of the solar system is achieved on the base of minimu
... Show MoreLeap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (F
... Show MoreNowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show More