Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process over low temperature and water vapor environment condition. However, a great emphasis is required for developing structural materials in oxidation and rapid heating environment where the temperature is greater than 1700 °C. This review covers briefly all main types of Thermal Protection Systems (TPSs) and all the materials are used to fabricate them with the maximum operational temperatures. Also, it covers the promised UHTMs (SiC, ZrB2, HfB2, SiB6 and B4C) which are currently using for several aerospace applications, especially for TPS. Besides, it discusses the oxidation of SiC, B4C, SiB6, ZrB2 and HfB2. Therefore, the carbides and borides of the transition metals, Zr and Hf have a high-melting temperature and good stability in forming high-melting temperature oxides.
In the present study, MCM-41 was synthesis as a carrier for poorly drugs soluble in water, by the sol-gel technique. Textural and chemical characterizations of MCM-41 were carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and thermal gravimetric analysis (TGA). The experimental results were analyzed mesoporous carriers MCM-41. With maximum drug loading efficiency in MCM-41 determined to be 90.74%. The NYS released was prudently studied in simulated body fluid (SBF) pH 7.4 and the results proved that the release of NYS from MCM-41 was (87.79%) after 18 hr. The data of NYS released was found to be submitted a Weibull model with a correlation coefficient of (0.995). The Historical
... Show MoreSecure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and p
... Show Moremajor goal of the next-generation wireless communication systems is the development of a reliable high-speed wireless communication system that supports high user mobility. They must focus on increasing the link throughput and the network capacity. In this paper a novel, spectral efficient system is proposed for generating and transmitting twodimensional (2-D) orthogonal frequency division multiplexing (OFDM) symbols through 2- D inter-symbol interference (ISI) channel. Instead of conventional data mapping techniques, discrete finite Radon transform (FRAT) is used as a data mapping technique due to the increased orthogonality offered. As a result, the proposed structure gives a significant improvement in bit error rate (BER) performance. Th
... Show MoreIn this study, we introduce new a nanocomposite of functionalize graphene oxide FGO and functionalize multi wall carbon nanotube (F-MWCNT-FGO).The formation of nanocomposite was confirmed by FT-IR ,XRD and SEM. The magnitude of the dielectric permittivity of the (F-MWCNT-FGO) nanocomposite appears to be very high in the low frequency range and show a unique negative permittivity at frequencies range from 400 Hz to 4000Hz. The ac conductivity of nanocomposite reaches 23.8 S.m-1 at 100Hz.
This mini review provides an overview of methods for manufacturing expanded graphite (EGT) and the use of its composites with metal oxides in the field of photodegradation of dyes. Dyes from textile manufacturing represent a significant environmental pollution problem in waterways worldwide, highlighting the need for environmentally friendly and efficient technologies to remove dyes from industrial and local wastewater. Photodegradation technologies offer a low-cost, sustainable solution with minimal secondary pollution. Carbon-based materials, such as expanded graphite, are advantageous in enhancing catalytic activity. Accordingly, this review will explore the different fabrication techniques of expanded graphite and summarize the recent d
... Show MoreIn this review, numerous analytical methods to distinguish pigments in tattoo, paint, and ink items are discussed. The selection of a method was dependent upon the purpose, e.g., quantification or identification of pigments. The introductory part of this review focuses on describing the importance of setting up a pigment-associated safety profile. The formation of different degradation chemical substances as well as impurity trends can be indicated through the chemical investigation of pigments in tattoo products. It is noteworthy that pigment recognition in tattoo inks can work as a preliminary method to identify the pigments in a patient's tattoo before being removed by laser therapy. Contrary to the stud
In this review, numerous analytical methods to distinguish pigments in tattoo, paint, and ink items are discussed. The selection of a method was dependent upon the purpose, e.g., quantification or identification of pigments. The introductory part of this review focuses on describing the importance of setting up a pigment-associated safety profile. The formation of different degradation chemical substances as well as impurity trends can be indicated through the chemical investigation of pigments in tattoo products. It is noteworthy that pigment recognition in tattoo inks can work as a preliminary method to identify the pigments in a patient's tattoo before being removed by laser therapy. Contrary to the stud
Pyrolysis of high density polyethylene (HDPE) was carried out in a 750 cm3 stainless steel autoclave reactor, with temperature ranging from 470 to 495° C and reaction times up to 90 minute. The influence of the operating conditions on the component yields was studied. It was found that the optimum cracking condition for HDPE that maximized the oil yield to 70 wt. % was 480°C and 20 minutes. The results show that for higher cracking temperature, and longer reaction times there was higher production of gas and coke. Furthermore, higher temperature increases the aromatics and produce lighter oil with lower viscosity.