Motives: The research deals with the issue of urban sprawl on agricultural lands. It is an urban problem caused by rapid urbanization and poor planning. It is considered one problem that threatens cities with environmental and health disasters. It also threatens agricultural life and the green belt surrounding cities. Changes in urban sprawl on agricultural land are associated with complex processes that lead to multiple social, economic, political, and environmental risks and thus pose a threat and an obstacle to the sustainability of cities. Aim: The research aims to study and evaluate the reality of the city of Baghdad and the extent of its ability and flexibility to withstand the disaster of urban sprawl on agricultural lands. The research also the aim of this research to identify the gaps and the reasons that led to this disaster and reach solutions that may reduce this phenomenon that burdens the economy and the Iraqi people who suffer from difficult economic conditions. In addition to raising awareness about the effects of urban sprawl on agricultural lands and the environment, clarifying the role of participation and the limits of responsibility that can be entrusted to government and academic agencies at all levels, individually or collectively, to participate and find solutions to the risk of extensive urban sprawl. Results: In assessing the reality of the study area, the research relied on the city resilience scorecard, which the United Nations Office for Disaster Risk Reduction (UNDRR) and with the support of United States Agency for International Development (USAID) and the European Commission. Field surveys and the opinions of specialists were relied upon to study the reality of the city of Baghdad to determine the extent to which it was affected by the disaster of encroachment on agricultural lands. There are gaps between planning and contemporary challenges among the most important research findings. Planning is increasingly decoupled from the contemporary urban challenges associated with rapid urbanization. The results of the practical study showed that the division of land uses in the city of Baghdad is not deep and incomplete. Also, it is not regularly reviewed according to the map of the expected risks, including the state of urban sprawl on agricultural lands in the city. Consequently, the city’s inability to withstand the disaster resulting from urban sprawl and the problems that result from it in the environmental, health, or social aspects. Based on the results, the research reached a set of recommendations, including the need for continuous updating to detect urban sprawl on agricultural lands. This is done using the latest remote sensing data and taking quick precautions against these expansions, in addition to the importance of updating building controls and standards regularly (or periodically) to take the changing data and evidence about risks to enhance the city of Baghdad’s ability to withstand the disaster of the decline of agricultural lands.
Background: This study was done to assist X-ray diffraction and biocompatability of glass ionomer cement reinforced by different ratios of Hydroxyapatite. Materials and Methods: The powder of glass ionomer cement reinforced by different ratios of Hydroxyapatite were used to get X-ray diffraction pattern by X-ray diffraction machine, While for biocompatibility test, A polyethylene tubes containing glass ionomer cement reinforced by different ratios of Hydroxyapatite were implanted on the dorsal submucosal site of Rabbit's tissues and histological slide were prepared for histopathological study. Results: X-ray diffraction test showed that all elements of glass ionomer cement reinforced by different ratios of Hydroxyapatite were react with eac
... Show MoreWe describe the synthesis and characterization of a novel 2D-MnOx material using a combination of HR-TEM, XAS, XRD, and reactivity measurements. The ease with which the 2D material can be made and the conditions under which it can be made implies that water oxidation catalysts previously described as “birnessite-like” (3D) may be better thought of as 2D materials with very limited layer stacking. The distinction between the materials as being “birnessite-like” and “2D” is important because it impacts on our understanding of the function of these materials in the environment and as catalysts. The 2D-MnOx material is noted to be a substantially stronger chemical oxidant than previously noted for other birnessite-like manganese oxi
... Show MoreSynthesis, Characterization And Biological Evaluation of Schiff Base And Ligand Metal Complexes of Some Drug Substances
Tooth restoration one of the most common procedures in dental practice. The replacement of the entire restoration leads to loss of tooth structure and increase risk of pulp injury; replacement is also time consuming and costly. According to the minimally invasive approach when minimal defects, repair is the better choice than the total replacement of the restoration. This study aims to evaluate repair rating versus replacement treatment procedure for defective composite fillings among Iraqi dentists. Material and methodology: A questionnaire survey were designed and distributed to 184 post-graduate dentists in Iraq. The inquiry pertained general information; including their clinical experience in years, their preference in terms of direct c
... Show MoreABSTRACT : A new ligand [ 2- (3-acetylthioureido)-3-phenylpropanoic acid (APA) is synthesized by reaction of acetyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(APA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper complex is has square planer geometry.
The kinetics of nickel removal from aqueous solutions using a bio-electrochemical reactor with a packed bed rotating cylinder cathode was investigated. The effects of applied voltage, initial nickel concentration, the rotation speed of the cathode, and pH on the reaction rate constant (k) were studied. The results showed that the cathodic deposition occurred under mass transfer control for all values of the applied voltage used in this research. Accordingly, the relationship between concentration and time can be represented by a first-order equation. The rate constant was found to be dependent on the applied voltage, initial nickel concentration, pH, and rotation speed. It was increased as the applied voltage increased and decreased as t
... Show MoreIn this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif
... Show More