Motives: The research deals with the issue of urban sprawl on agricultural lands. It is an urban problem caused by rapid urbanization and poor planning. It is considered one problem that threatens cities with environmental and health disasters. It also threatens agricultural life and the green belt surrounding cities. Changes in urban sprawl on agricultural land are associated with complex processes that lead to multiple social, economic, political, and environmental risks and thus pose a threat and an obstacle to the sustainability of cities. Aim: The research aims to study and evaluate the reality of the city of Baghdad and the extent of its ability and flexibility to withstand the disaster of urban sprawl on agricultural lands. The research also the aim of this research to identify the gaps and the reasons that led to this disaster and reach solutions that may reduce this phenomenon that burdens the economy and the Iraqi people who suffer from difficult economic conditions. In addition to raising awareness about the effects of urban sprawl on agricultural lands and the environment, clarifying the role of participation and the limits of responsibility that can be entrusted to government and academic agencies at all levels, individually or collectively, to participate and find solutions to the risk of extensive urban sprawl. Results: In assessing the reality of the study area, the research relied on the city resilience scorecard, which the United Nations Office for Disaster Risk Reduction (UNDRR) and with the support of United States Agency for International Development (USAID) and the European Commission. Field surveys and the opinions of specialists were relied upon to study the reality of the city of Baghdad to determine the extent to which it was affected by the disaster of encroachment on agricultural lands. There are gaps between planning and contemporary challenges among the most important research findings. Planning is increasingly decoupled from the contemporary urban challenges associated with rapid urbanization. The results of the practical study showed that the division of land uses in the city of Baghdad is not deep and incomplete. Also, it is not regularly reviewed according to the map of the expected risks, including the state of urban sprawl on agricultural lands in the city. Consequently, the city’s inability to withstand the disaster resulting from urban sprawl and the problems that result from it in the environmental, health, or social aspects. Based on the results, the research reached a set of recommendations, including the need for continuous updating to detect urban sprawl on agricultural lands. This is done using the latest remote sensing data and taking quick precautions against these expansions, in addition to the importance of updating building controls and standards regularly (or periodically) to take the changing data and evidence about risks to enhance the city of Baghdad’s ability to withstand the disaster of the decline of agricultural lands.
In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio
... Show MoreNanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.
Traffic loading and environmental factors are among the most serious variables that cause the spoilage of flexible pavements and lead to a decrease in their design life. The objective of this study is to investigate the influence of axle load raise and the change in resilient modulus on the flexible pavement design life. Locally, Highway geometric design code for Iraqi building code has assign certain admissible maximum load limits per every axle truck type that should not be overrun. In this paper nine different axle truck loads (8, 9, 10, 11, 12, 13, 14, 15, and 16) tons, single axle with dual tire and, and two different resilient moduli of asphalt pavement were chosen. The evaluation was carried out assuming high temperature to represent
... Show MoreIn this work, magnesium aluminate spinel (MA) (MgO 28 wt%, Al2O3 72 wt%) stoichiometric compound , were synthesized via solid state reaction (SSR) Single firing stage, and the impact of sintering on the physical properties and thermal properties as well as the fine structure and morphology of the ceramic product were examined. The Spinel samples were pressed at of (14 MPa) and sintering soaking time (2h). The effect of adding oxide titania (TiO2) was studied. The obtained powders were calcined at a temperature range of 1200 and 1400 °C. The calcined samples spinel were characterized by XRD, it showed the presence of developed spinel phase end also showed that the best catalyst is titania. The SEM image showed the high sintering temperat
... Show MoreSansevieriatrifasciata was studied as a potential biosorbent for chromium, copper and nickel removal in batch process from electroplating and tannery effluents. Different parameters influencing the biosorption process such as pH, contact time, and amount of biosorbent were optimized while using the 80 mm sized particles of the biosorbent. As high as 91.3 % Ni and 92.7 % Cu were removed at pH of 6 and 4.5 respectively, while optimum Cr removal of 91.34 % from electroplating and 94.6 % from tannery effluents was found at pH 6.0 and 4.0 respectively. Pseudo second order model was found to best fit the kinetic data for all the metals as evidenced by their greater R2 values. FTIR characterization of biosorbent revealed the presence of carboxyl a
... Show MoreCeramic to metal joining technique, which was used in this investigation includes the use of active filler alloy as a sandwich between the alumina and kovar alloy for brazing. High purity powdered metals of silver, copper, and additives of titanium were used to prepare the active filler alloy, through compacting the mixed powders and alloying in a furnace with argon atmosphere at the temperature of 800oC for 10 minutes. To use it as an active filler metal, it has been modified to a proper thickness. Two groups of alumina were prepared with different sintering temperatures (1450oC and 1650oC) and each group was tested under atmospheric pressure, vacuum furnace pressure of 2*10-4 torr and vacuum furnace pressure of 2*10-6 torr. All the pro
... Show MoreThe experiment was conducted using Potato( Solanum tuberosum L.) at the eastern Radwaniyah at private field during fall season 2020/2021 and spring 2021 to study the effect of nitrogen levels to 350, 275, 200 kg N h-1 ( N1, N2, N3) and phosphorous to 100, 180, 360 kg P2O5 h-1 ( P1, P2, P3) and potassium to 100, 200, 300 kg K2O h-1 ( K1, K2, K3) to vegetative growth and yield of industrial potato, The seeds of the hybrid potato Sinora, Class A, were planted in the fall season on 15/9/2020 and Elite in the spring season on 31/1/2021. The experimental fertilizers were added in four batches and in proportions according to the stages of plant age, Factorial experiment with RCBD using three replications. The results showed that changing t
... Show Moreirrigation use at many stations along the Euphrates River inside the Iraqi lands and to try to correlate the results with the satellite image analyses for the purpose of making a colored model for the Euphrates that can be used to predict the quality classifications of the river for irrigation use at any point along the river. The Bhargava method was used to calculate the water quality index for irrigation use at sixteen stations along the river from its entrance to the Iraqi land at Al-Qaim in Anbar governorate to its union with the Tigris River at Qurna in Basrah governorate. Coordinates of the sixteen stations of the Euphrates River were projected at the mosaic of Iraq satellite image which was taken from LANDSAT satellite for bands 1, 2
... Show More