In this work, (Cu1-xAgx)2ZnSnSe4 (CAZTSe) alloys with various silver content (x= 0.0, 0.1and 0.2) have been prepared by reacting their high purity elements (Cu, Ag, Zn, Sn and Se) in an evacuated quartz tube under pressure of 10 -3Torr. The composition of the prepared alloys was determined by energy dispersive X-ray spectroscopy (EDXS) analysis, the results were close to the theoretical values. CAZTSe thin films with a thickness of 800 nm were deposited by thermal evaporation technique on glass substrates at room temperature (RT) with a deposition rate of 0.53nm/sec. Similarly, CdS thin films were deposited with a thickness of 100 nm on the same substrates at RT with a deposition rate of 0.3nm/sec from ready-made CdS alloy powder. All prepared thin films were annealed at temperatures of 373K and 473K under vacuum (10-3Torr) for 1h. X-ray analysis showed that all CAZTSe alloys and their thin films were polycrystalline and have the tetragonal structure with preferential orientation in the (112) direction, while all thin CdS films were polycrystalline and have the hexagonal structure with preferential orientation in the (002) direction. The scanning electron microscopy (SEM) technique was used to study the surface morphology of all prepared CAZTSe films, while the atomic force microscopy (AFM) technique was used to study the surface topography of all prepared CAZTSe and CdS films. SEM results revealed that CAZTSe films had uniform surface features with irregular sized grains, while AFM results showed that the surface roughness and the average grain size of CAZTSe and CdS thin films increased with increasing Ag content for CAZTSe thin films and annealing temperature for CAZTSe and CdS thin films. The absorbance and transmittance spectra for CAZTSe and CdS thin films were recorded in the wavelength ranges of (400-1100) nm and (350- 1100) nm, respectively. Optical measurements showed that all CAZTSe and CdS thin films have a direct energy gap (Eg) that decreased with increasing silver content for CAZTSe thin films and annealing temperature (Ta) for both types of prepared thin films, so it decreased from 1.73 eV to1.5 eV when x content increased from 0.0 to 0.2 and decreased from 1.5 eV to1.46 eV and from 2.47 eV to 2.38 eV when Ta increased from RT to 473K for CAZTSe thin films with x content equal to 0.2 and CdS thin films, respectively. Optical constants such as extinction coefficient, refractive index and dielectric constant were calculated for all prepared thin films. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increased with increasing Ag content for CAZTSe thin films and annealing temperature for both types of thin films. So the electrical conductivity changed from 1.1276*10-2 (Ω.cm)-1 to 28.9266*10-2 (Ω.cm)-1 when x changed from 0.0 to 0.2 and changed from 28.9266*10-2 (Ω.cm)-1 to 57.4599*10-2 (Ω.cm)-1 and from 4.0476*10-4 (Ω.cm)-1 to 9.4227*10-4 (Ω.cm)-1 when Ta changed from RT to 473K for CAZTSe thin films with Ag content equal to 0.2 and CdS thin films, respectively. The prepared thin films have two activation energies (Ea1 & Ea2) in the temperature ranges of (318-488)K and (313-443)K for CAZTSe and CdS films, respectively. The results of Hall effect for CAZTSe thin films showed that all films were of acceptor type and the concentration of holes in them decreased with increasing silver content and annealing temperature, while CdS thin films were of donor type and the concentration of electrons in them increased with increasing annealing temperature. In this research, solar cells were fabricated from CdS/CAZTSe/Si structurThe C-V measurements revealed that all prepared heterojunctions were of the abrupt type and the junction capacitance and carrier concentration reduced while the width of depletion region and the built-in potential increased with increasing the silver content and annealing temperature. The current-voltage characteristics under dark condition of CAZTSe heterojunctions showed that both the ideality factor and saturation current decreased with increasing Ag content and annealing temperature. While,The current-voltage characteristics under dark condition of CAZTSe heterojunctions showed that both the ideality factor and saturation current decreased with increasing Ag content and annealing temperature. While, the current-voltage measurements under illumination showed that the performance of heterojunction solar cell improved with increasing Ag content and annealing temperature. The result indicated that the prepared solar cell with 0.2 Ag content and 473K annealing temperature exhibited the highest efficiency (η = 2.827%) compared to other prepared solar cells
A novel metal complexes Cu (II), Co (II), Cd (II), Ru (III) from azo ligand 5-((2-(1H-indol-2-yl)
ethyl) diazinyl)-2-aminophenol were synthesized by simple substitution of tryptamine with 2-aminophenol.
Structures of all the newly synthesized compounds were characterized by FT IR, UV-Vis, Mass spectroscopy
and elemental analysis. In addition measurements of magnetic moments, molar conductance and atomic
absorption. Then study their thermal stability by using TGA and DSC curves. The DCS curve was used to
calculate the thermodynamic parameters ΔH, ΔS and Δ G. Analytical information showed that all complexes
achieve a metal:ligand ratio of [1:1]. In all complex examinations, the Ligand performs as a tri
A simple physical technique was used in this study to create stable and cost-effective copper oxide (CuO) nanoparticles from pure copper metal using the pulsed laser ablation technique. The synthesis of crystalline CuO nanoparticles was confirmed by various analytical techniques such as particle concentration measurement using atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FE-SEM), the energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to determine the crystal size and identify of the crystal structure of the prepared particles. The main characteristic diffraction peaks of the three samples were consistent. The corresponding 2θ is also consistent, and the cytotoxicity of the nanoparticles was
... Show MoreThis paper presents the design, construction and investigates an experimental study of a parabolic Trough Solar Collector (PTSC). It is constructed of multi – piece glass mirror to form the parabolic reflector (1.8 m ? 2.8 m) its form were checked with help of a laser and carbon steel rectangular as receiver. Sun tracker has been developed (using two – axis) to track solar PTSC according to the direction of beam propagation of solar radiation. Using synthetic oil as a heat transfer its capability to heat transfer and load high temperature (?400 oc). The storage tank is fabricated with stainless steel of size 50 L. The experimental tests have been carried out in Baghdad climatic conditions (33.3o N, 44.4o E) during selective days of the
... Show MoreThe annealing temperature (200–500 °C) effects of optical frequency response on the dielectric functions of sol–gel derived CuCoO
The paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreThe influences of the Cu substitution at Hg site in the HgOd layer, upon the
microstructure, Tc and oxygen content of Hg-1223 have been investigated. High
temperature superconductor with a nominal composition Hg1-xCuxBa2Ca2Cu3O8 + δ for
Cu ( 0 £ x £ 0.5) have been prepared by the two-steps solid state reaction method
under optimum conditions. XRD showed a tetragonal structure with a high ratio of
Hg-1223 superconductor phase. Tc enhancement has been determined with the Cu
concentration was is found to be Tc = 153 K for x = 0.3, while the oxygen content
observed variously with Cu concentration. Hg1-xCuxBa2Ca2Cu3O8+δ structure, oxygen
content and Tc behavior have been discussed.
New bidentate Schiff base ligand (L) namely [(Z)-3-(2-oxoindolin-3ylildeneamino)benzoic acid] type (NO) was prepared via condensation of isatin and 3-amino benzoic acid in ethanol as a solvent in existence of drops of (glac. CH3COOH). The new ligand (L) was characterized base on elemental microanalysis, FT-IR, UV-Vis, 1H-NMR spectra along with melting point. Ligand complexes in general formula [M(L)2Cl2]. H2O, where: MII = Co, Cu, Cd, and Hg; L= C15H10 N2O3 were synthesized and identified by FT-IR, UV-Vis, 1H-NMR (for Cd complex only) spectra, atomic absorption, chloride content along with molar conductivity and magnetic susceptibility. It was found that the ligand behaves as bidentate on complexation via (N) atom of imine group an
... Show More