In this work, (Cu1-xAgx)2ZnSnSe4 (CAZTSe) alloys with various silver content (x= 0.0, 0.1and 0.2) have been prepared by reacting their high purity elements (Cu, Ag, Zn, Sn and Se) in an evacuated quartz tube under pressure of 10 -3Torr. The composition of the prepared alloys was determined by energy dispersive X-ray spectroscopy (EDXS) analysis, the results were close to the theoretical values. CAZTSe thin films with a thickness of 800 nm were deposited by thermal evaporation technique on glass substrates at room temperature (RT) with a deposition rate of 0.53nm/sec. Similarly, CdS thin films were deposited with a thickness of 100 nm on the same substrates at RT with a deposition rate of 0.3nm/sec from ready-made CdS alloy powder. All prepared thin films were annealed at temperatures of 373K and 473K under vacuum (10-3Torr) for 1h. X-ray analysis showed that all CAZTSe alloys and their thin films were polycrystalline and have the tetragonal structure with preferential orientation in the (112) direction, while all thin CdS films were polycrystalline and have the hexagonal structure with preferential orientation in the (002) direction. The scanning electron microscopy (SEM) technique was used to study the surface morphology of all prepared CAZTSe films, while the atomic force microscopy (AFM) technique was used to study the surface topography of all prepared CAZTSe and CdS films. SEM results revealed that CAZTSe films had uniform surface features with irregular sized grains, while AFM results showed that the surface roughness and the average grain size of CAZTSe and CdS thin films increased with increasing Ag content for CAZTSe thin films and annealing temperature for CAZTSe and CdS thin films. The absorbance and transmittance spectra for CAZTSe and CdS thin films were recorded in the wavelength ranges of (400-1100) nm and (350- 1100) nm, respectively. Optical measurements showed that all CAZTSe and CdS thin films have a direct energy gap (Eg) that decreased with increasing silver content for CAZTSe thin films and annealing temperature (Ta) for both types of prepared thin films, so it decreased from 1.73 eV to1.5 eV when x content increased from 0.0 to 0.2 and decreased from 1.5 eV to1.46 eV and from 2.47 eV to 2.38 eV when Ta increased from RT to 473K for CAZTSe thin films with x content equal to 0.2 and CdS thin films, respectively. Optical constants such as extinction coefficient, refractive index and dielectric constant were calculated for all prepared thin films. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increased with increasing Ag content for CAZTSe thin films and annealing temperature for both types of thin films. So the electrical conductivity changed from 1.1276*10-2 (Ω.cm)-1 to 28.9266*10-2 (Ω.cm)-1 when x changed from 0.0 to 0.2 and changed from 28.9266*10-2 (Ω.cm)-1 to 57.4599*10-2 (Ω.cm)-1 and from 4.0476*10-4 (Ω.cm)-1 to 9.4227*10-4 (Ω.cm)-1 when Ta changed from RT to 473K for CAZTSe thin films with Ag content equal to 0.2 and CdS thin films, respectively. The prepared thin films have two activation energies (Ea1 & Ea2) in the temperature ranges of (318-488)K and (313-443)K for CAZTSe and CdS films, respectively. The results of Hall effect for CAZTSe thin films showed that all films were of acceptor type and the concentration of holes in them decreased with increasing silver content and annealing temperature, while CdS thin films were of donor type and the concentration of electrons in them increased with increasing annealing temperature. In this research, solar cells were fabricated from CdS/CAZTSe/Si structurThe C-V measurements revealed that all prepared heterojunctions were of the abrupt type and the junction capacitance and carrier concentration reduced while the width of depletion region and the built-in potential increased with increasing the silver content and annealing temperature. The current-voltage characteristics under dark condition of CAZTSe heterojunctions showed that both the ideality factor and saturation current decreased with increasing Ag content and annealing temperature. While,The current-voltage characteristics under dark condition of CAZTSe heterojunctions showed that both the ideality factor and saturation current decreased with increasing Ag content and annealing temperature. While, the current-voltage measurements under illumination showed that the performance of heterojunction solar cell improved with increasing Ag content and annealing temperature. The result indicated that the prepared solar cell with 0.2 Ag content and 473K annealing temperature exhibited the highest efficiency (η = 2.827%) compared to other prepared solar cells
Iraqi oil crudes have some of the physical and chemical characteristics that distinguish it from other types of oil crudes in the world. Some of these features such us molecular composition, rheological, viscosity and emulsions are studied carefully by researchers. In this work, a comparative study of the linear and the non-linear optical properties for typical heavy and light crude oils of Iraqi origin was studied utilizing Z-scan technique. The He -Ne laser of wavelength 632.8 nm had been used for this purpose. These samples were collected from Basra and Kut oil fields. The values of the non-linear refractive index (n2), non-linear absorption coefficient (β), and third-order electrical susceptibility (χ3) were e
... Show MoreThin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show MoreA new ligand N-(methylcarbamothioyl) acetamide (AMP) was synthesized by reaction of acetyl chloride with adenine. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscepility, conductively measurement. The general formula [M(AMP)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
This study includes the synthesis of new derivatives of 1, 2, 4- Triazole which are contain Schiff bases derived from 1, 4, 5, 6- tetrahydropyrimidine. The structures of these derivatives were characterized from their melting points, infrared spectroscopy and elemental analysis. These derivatives were tested for inhibition of E-coli and were all found to be active
By condensation of benzaldehyde with thiourea in absolute ethanol in the presence of glacial acetic acid as a catalyst, the Schiff base(1-benzylidenethiourea)[I] was synthesized by synthesis of 4-(3-benzylidenethioureido)-4-thioxobut-2-enoic acid compound[II] by reaction of maleic anhydride with schiff base [I] in DMF. When treating compound [II] with ammonium persulfate (NH4)2S2O8 (APS) as an ethanol initiator to obtain polymer [III], compound [III] reacted to polymer [IV] with SOCl2 in benzene. Sulfamethizole, celecoxib, salbutamol, 4-aminoantipyrine to yield polymers [V-VIII], compound [IV] reaction with different drugs. Spectral evidence established the structure of synthesized co
In this research work, synthesis, antimicrobial and antioxidant bioactivity of a chain of compounds having unsaturated ketones bond and isoxazoline moiety have been described. New chalcone derivatives containing isoxazoline moiety have been synthesized. Generally, Chalcones are unsaturated ketones bearing (-CO-CH=CH-) as reactive ketoethylenic group that give the bright yellow colored compounds due to this chromophore group. Firstly, chalcones (IIa-d) have been prepared by cyclocondensation (Claisen-Schmidt condensation) of triphenyl aminobenzaldehyde with different substituted acetophenone in ethyl alcohol to produce a series of chalcones compounds with bright yellow colored as a
... Show MoreThis research included the preparation of 2-mercaptobenzoxazole (N1) by the reaction of ortho-aminophenol with carbon disulfide in an alcoholic potassium hydroxide solution. The 2-mercapto benzoxazole (N1) was then treated with hydrazine to obtain the 2-hydrazino benzoxazole (N2). A number of hydrazones (N3-N5) were prepared through the reaction of N2 with different benzaldehydes. The compound (N6) was also prepared whereby the ring closing of hydrazone (N3) using chloroacetylchloride, while the compound (N7) was prepared by treating 2-hydrazino benzoxazole with acetylacetone. When the compound (N1) was treated with formaldehyde, it afforded the compound (N8). Also, the N9 was obtained from the reaction of N1 with chloroacetic acid in th
... Show MorePrimary amide derivatives as histone deacetylase inhibitors (HDACIs) are very rare. This paper describes the synthesis of primary amide derivatives (compounds 6 and 7) that have the requirements to be histone deacetylase inhibitors of the zinc-binding type. Both of them exhibited good cytotoxicity against the tested cancer cell lines with much lower cytotoxicity against normal cell line.
The aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.