In this work, (Cu1-xAgx)2ZnSnSe4 (CAZTSe) alloys with various silver content (x= 0.0, 0.1and 0.2) have been prepared by reacting their high purity elements (Cu, Ag, Zn, Sn and Se) in an evacuated quartz tube under pressure of 10 -3Torr. The composition of the prepared alloys was determined by energy dispersive X-ray spectroscopy (EDXS) analysis, the results were close to the theoretical values. CAZTSe thin films with a thickness of 800 nm were deposited by thermal evaporation technique on glass substrates at room temperature (RT) with a deposition rate of 0.53nm/sec. Similarly, CdS thin films were deposited with a thickness of 100 nm on the same substrates at RT with a deposition rate of 0.3nm/sec from ready-made CdS alloy powder. All prepared thin films were annealed at temperatures of 373K and 473K under vacuum (10-3Torr) for 1h. X-ray analysis showed that all CAZTSe alloys and their thin films were polycrystalline and have the tetragonal structure with preferential orientation in the (112) direction, while all thin CdS films were polycrystalline and have the hexagonal structure with preferential orientation in the (002) direction. The scanning electron microscopy (SEM) technique was used to study the surface morphology of all prepared CAZTSe films, while the atomic force microscopy (AFM) technique was used to study the surface topography of all prepared CAZTSe and CdS films. SEM results revealed that CAZTSe films had uniform surface features with irregular sized grains, while AFM results showed that the surface roughness and the average grain size of CAZTSe and CdS thin films increased with increasing Ag content for CAZTSe thin films and annealing temperature for CAZTSe and CdS thin films. The absorbance and transmittance spectra for CAZTSe and CdS thin films were recorded in the wavelength ranges of (400-1100) nm and (350- 1100) nm, respectively. Optical measurements showed that all CAZTSe and CdS thin films have a direct energy gap (Eg) that decreased with increasing silver content for CAZTSe thin films and annealing temperature (Ta) for both types of prepared thin films, so it decreased from 1.73 eV to1.5 eV when x content increased from 0.0 to 0.2 and decreased from 1.5 eV to1.46 eV and from 2.47 eV to 2.38 eV when Ta increased from RT to 473K for CAZTSe thin films with x content equal to 0.2 and CdS thin films, respectively. Optical constants such as extinction coefficient, refractive index and dielectric constant were calculated for all prepared thin films. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increased with increasing Ag content for CAZTSe thin films and annealing temperature for both types of thin films. So the electrical conductivity changed from 1.1276*10-2 (Ω.cm)-1 to 28.9266*10-2 (Ω.cm)-1 when x changed from 0.0 to 0.2 and changed from 28.9266*10-2 (Ω.cm)-1 to 57.4599*10-2 (Ω.cm)-1 and from 4.0476*10-4 (Ω.cm)-1 to 9.4227*10-4 (Ω.cm)-1 when Ta changed from RT to 473K for CAZTSe thin films with Ag content equal to 0.2 and CdS thin films, respectively. The prepared thin films have two activation energies (Ea1 & Ea2) in the temperature ranges of (318-488)K and (313-443)K for CAZTSe and CdS films, respectively. The results of Hall effect for CAZTSe thin films showed that all films were of acceptor type and the concentration of holes in them decreased with increasing silver content and annealing temperature, while CdS thin films were of donor type and the concentration of electrons in them increased with increasing annealing temperature. In this research, solar cells were fabricated from CdS/CAZTSe/Si structurThe C-V measurements revealed that all prepared heterojunctions were of the abrupt type and the junction capacitance and carrier concentration reduced while the width of depletion region and the built-in potential increased with increasing the silver content and annealing temperature. The current-voltage characteristics under dark condition of CAZTSe heterojunctions showed that both the ideality factor and saturation current decreased with increasing Ag content and annealing temperature. While,The current-voltage characteristics under dark condition of CAZTSe heterojunctions showed that both the ideality factor and saturation current decreased with increasing Ag content and annealing temperature. While, the current-voltage measurements under illumination showed that the performance of heterojunction solar cell improved with increasing Ag content and annealing temperature. The result indicated that the prepared solar cell with 0.2 Ag content and 473K annealing temperature exhibited the highest efficiency (η = 2.827%) compared to other prepared solar cells
High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreArtificial roughness applied to a Solar Air Heater (SAH) absorber plate is a popular technique for increasing its total thermal efficiency (ηt−th). In this paper, the influence of geometrical parameters of V-down ribs attached below the corrugated absorbing plate of a SAH on the ηt−th was examined. The impacts of key roughness parameters, including relative pitch p/e (6–12), relative height e/D (0.019–0.043), angles of attack α (30–75°), and Re (1000–20,000), were examined under real weather conditions. The SAH ηt−th roughened by V-down ribs was predicted using an in-house developed conjugate heat-transfer numerical model. The maximum SAH ηt−th was shown to be 78.8% as predicted under the steady-state condition
... Show MoreThe solar photocatalytic degradation of diuron, which is one of the herbicides, has been studied by a solar pilot plant in heterogeneous solar photocatalysis with titanium dioxide. The pilot plant was made up of compound parabolic collectors specially designed for solar photocatalytic applications. The influence of different variables such as, H2O2 initial concentration, TiO2 initial concentration, and diuron initial concentration with their relationship to the degradation efficiency were studied. Hydrogen peroxide (H2O2) found to increase the rate of diuron degradation. The best removal efficiency of heterogeneous solar photocatalytic TiO2 system was found to be 46.65 % and for heterogeneous solar photocatalytic TiO2/ H2O2 system was fo
... Show MoreIn this paper, 3D simulation of the global coronal magnetic field, which use observed line of sight component of the photosphere magnetic field from (MDI/SOHO) was carried out using potential field model. The obtained results, improved the theoretical models of the coronal magnetic field, which represent a suitable lower boundary conditions (Bx, By, Bz) at the base of the linear force-free and nonlinear force free models, provides a less computationally expensive method than other models. Generally, very high speed computer and special configuration is needed to solve such problem as well as the problem of viewing the streamline of the magnetic field. For high accuracy special mathematical treatment was adopted to solve the computation comp
... Show MoreSolar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreNew complexes of the type [ML2(H2O)2] ,[FeL2(H2O)Cl] and [VOL2] were M=Co(II),Ni(II) and Cu(II) ,L=4-(2-methyl-4-oxoquinazoline-3(4H)-yl) benzoic acid were synthesized and characterized by element analysis, magnetic susceptibility ,molar conductance ,FT-IR and UV-visible. The studies indicate that the L acts as doubly monodentate bridge for metal ions and form mononuclear complexes. The complexes are found to be octahedral except V(IV) complex is square pyrimde shape . The structural geometries of compounds were also suggested in gas phase by theoretical treatments, using Hyper chem-6 program for the molecular mechanics and semi-empirical calculations, addition heat of formation(?Hf ?) and binding energy (?Eb)for the free ligan
... Show MoreReaxys Chemistry database information SciVal Topics Metrics Abstract A novel CoO–ZnO nanocomposite was synthesized by the photo irradiation method using a solution of cobalt and zinc complexes and used as a coating applied by electrophoretic deposition (EPD) for corrosion protection of stainless steel (SS) in saline solution. The samples were characterized using powder XRD, scanning electron microscopy (SEM) and electrochemical polarization. It was also found that the coating was still stable after conducting the corrosion test: it contained no cracks and CoO–ZnO nanocomposites clearly appeared on the surface. SEM showed that the significant surface cracking disappeared. XRD confirmed that CoO–ZnO nanocomposites comprised CoO and Zn
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl)amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones (5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones was secerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds (5a) showed mild antibacteri
... Show More