The aim of this study was to isolate and identify the cyanobacterium Scytonema hofmanni Var. calcicolum from the domestic drinking tanks as a new record in Iraqi drinking water. Scytonema hofmanni var. calcicolum, a filamentous freshwater cyanobacterium (blue-green alga). This alga was isolated from the walls of the domestic plastic water tanks in Al- karkh/ Baghdad city on July 2014. The sampling was performed by collecting three samples from this tanks, the three examined samples microscopically revealed the dominance of this cyanobacterium as unialgal in the studied samples. The results showed this alga has the ability to tolerate high temperature up to 42 Cº and very low light intensity inside the tanks which up to 10 μE/m²/s.
Iraq, home of the Tigris and Euphrates rivers, has survived an extreme deficiency of surface water assets over the years. The gap is due to the decline of the Iraqi water share every year, as well as a high demand for water use from different sectors, particularly agriculture.
Dam development has long given significant economic benefits to Iraq in circulating low‐priced electricity and supporting low‐income farmers by supplying them with a free irrigation system (Zakaria et al, 2012). This encouraged domestic consumption and investment.
Despite the fact that numerous advantages are expected from dam construction, it should be painstakingly assessed, utilizing cost
This study found that one of the constructive, necessary, beneficial, most effective, and cost-effective ways to meet the great challenge of rising energy prices is to develop and improve energy quality and efficiency. The process of improving the quality of energy and its means has been carried out in many buildings and around the world. It was found that the thermal insulation process in buildings and educational facilities has become the primary tool for improving energy efficiency, enabling us to improve and develop the internal thermal environment quality processes recommended for users (student - teacher). An excellent and essential empirical study has been conducted to calculate the fundamental values of the
... Show MoreAcinetobacter baumannii ability to form biofilm makes it to be opportunistic pathogen causing of nosocomial infections and to be good survivor in adverse environmental conditions including medical devices and hospital environments. Six isolates of A. baumannii were isolated from drinking water and tested to investigate biofilm formation capacity on three different type of abiotic surface, also several factors were examined such as hydrophobicity, PH and temperature. All A. baumannii isolates displayed a positive biofilm on congored aga test CRA (pigmented colonies with black color) and Christensen's test (adhesive layer of stained material to the inside surface of the tube).The obtained data of microbial adhesion to hydrocarbons assay (MATH
... Show MoreRenewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of
... Show MoreBiodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–
... Show More