The energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are determined, namely the electron hopping distance, the width of the tails, and pre - exponential factor. The densities of the energetic states (extended N (Eext), localize N (Eloc) and at the Fermi states N (Ef) will be calculated in each of the regions. Moreover, the effect of partial substitution of Se with antimony on energy states and degree of randomness, results observed that the energy densities changing with an increase antimony Sb concentration.
Fresh water resources in terms of water quality is a crucial issue worldwide. In Egypt, the Nile River is the main source of fresh water in the country and monitoring its water quality is a major task on governments and research levels. In the present case study, the physical, chemical and algal distribution in Nile River was monitored over two seasons (winter and summer) in 2019. The aims of the study were to check the seasonal variation among the different water parameters and also to check the correlations between those parameters. Water samples were collected from the Nile in Cairo governorate in EGYPT. The different physiochemical and microbiological properties in water samples were assessed. The studied parameters were included: te
... Show MoreBackground: Determination of local bone mineral density (BMD) with cortical thickness and bone height may offer a comprehensive description of the bone the surgeon will encounter when he or she actually sets the implant. Quantitative computed tomography (CT) (i.e., quantitative interpretation of values derived from Hounsfield units with a suitable calibration procedure) is the modality of choice to determine BMD. The aim of the present clinical study is to determine the local bone density in dental implant recipient sites using computerized tomography. Material and method: The sample consisted of (72) Iraqi patients whom referred to Al-Kharkh General hospital, Spiral CT scan Department for bone quality and quantity assessment after one wee
... Show MoreIn this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici
... Show MoreIn this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties. the op
... Show MoreThe V2O5 films were deposited on glass substrates which produce using "radio frequency (RF)"power supply and Argon gas technique. The optical properties were investigated by, UV spectroscopy at "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure, (0.03, 0.05 and 0.007 Torr), and substrate temperature (359, 373,473 and 573) K. The UV-Visible analysis shows that the average transmittance of all films in the range 40-65 %. When the thickness has been increased the transhumance was decreased from (65-40) %. The values of energy band gap were lowered from (3.02-2.9 eV) with the increase of thickness the films in relation to an increase in power, The energy gap decreased (2.8 - 2.7) eV with an increase in the pressure and
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.
The aim of the research is the knowing of the academic Scientific Journals of the colleges of University of Baghdad , through searching in the University of Baghdad website and the websites of colleges and thus studying the presentation of these journals in those website , and this is done by surfing the main pages of the websites for the colleges included in the research , and by analyzing the research made a menu for all the academic Scientific Journals for all institutes of the University of Baghdad , which simplifies the way for the researchers to publish these researches in the specific journals for their specialties .
The effect of 0.662MeV gamma radiation on the optical properties of the CdTe thin films was studied. 300nm thickness of CdTe samples were irradiated with doses (10, 20, 30,60krad) in room temperature. The absorption spectra for all the samples were recorded using UV- Visible spectrometer in order to calculate the energy gap, width of localized states and optical constants(refractive index, extinction coefficient, real and imaginary parts of dielectric constant). The optical energy gap was found to decrease from (1.53 to 1.48 eV), while the width of localized states increased from (1.34 to 1.49 eV) with the increasing of radiation dose. The behavior of energy gap with the irradiation dose makes the material a good candidate for dosimetry
... Show MoreQA Sarhan, University of Anbar Sport and Physical Education Sciences, 2019