Objectives This work presents laser coating of grade 1 pure titanium (Ti) dental implant surface with sintered biological apatite beta-tricalcium phosphate (β-TCP), which has a chemical composition close to bone. Materials and methods Pulsed Nd:YAG laser of single pulse capability up to 70 J/10 ms and pulse peak power of 8 kW was used to implement the task. Laser pulse peak power, pulse duration, repetition rate and scanning speed were modulated to achieve the most homogenous, cohesive and highly adherent coat layer. Scanning electron microscopy (SEM), energy dispersive X-ray microscopy (EDX), optical microscopy and nanoindentation analyses were conducted to characterise and evaluate the microstructure, phases, modulus of elasticity of the coating layer and calcium-to-phosphate ratio and composition. Results showed that the laser power and scanning speed influenced coating adherence. The cross-sectional field-emission scanning electron microscopy images at low power and high speed showed poor adherence and improved as the laser power increased to 2 kW. Decreasing the scanning speed to 0.2 mm/s at the same power of 2 kW increased adherence. EDX results of the substrate demonstrated that the chemical composition of the coat layer did not change after processing. Moreover, the maps revealed proper distribution of Ca and P with some agglomeration on the surface. The sharp peaks on the X-ray diffraction patterns indicated that β-TCPs in the coat layer were mostly crystalline. The elastic modulus was low at the surface and increased gradually with depth to reach 19 GPa at 200 nm; this value was close to that of bone. The microhardness of the coated substrate increased by about 88%. The laser pulse energy of 8.3 J, pulse peak power of 2 kW, pulse duration of 4.3 min, repetition rate of 10 Hz and scanning speed of 0.2 ms−1 yielded the best results. Conclusion: Both processing and coating have potential use for dental implant applications.
The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
The article characterizes metaphors and comparisons as a means of rethinking the phenomena of the surrounding world; two directions are named within which metaphors and comparisons are studied: 1) the linguo-classification direction combines several classifications of metaphors and comparisons, which are basically focused on comparing two denotations through the meanings of word forms that are part of the trope; 2) the theoretical and conceptual direction is associated with the concept of conceptual displacement and is the basis of the theoretical and methodological study of metaphor and comparison, i.e. the modern theory of metaphor is being formed; The main attention is focused on the comparative concept of Aristotle, which postul
... Show MoreCopper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
Tests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreThis article focuses on the relationship of gender to the effectiveness of both women and men in public relations work. Its aim is to identify the extent to which public relations employees are aware of the concept of gender, and to reveal the role of the institution in determining certain roles for both women and men at work, as well as to find out which employees are most effective in public relations activities within the institution.
The researcher uses public relations employees and officials in Iraqi ministries as a research sample to capture the point of view of both parties on the effectiveness of workers in public relations based on the definition of gender. The sample consists of 396 individuals
... Show MoreIn this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa