Unconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute relative error (AARE%) and the standard deviation error (SD%). It has been found that the developed equation is reliable and capable of predicting the UCS with an acceptable degree of confidence R², AARE% and SD% are 0.8549, 2.619%, and 0.0569%, respectively when compared with field data. Furthermore, when compared to other known correlations, showed better prediction results.
A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).
A Multiple System Biometric System Based on ECG Data
OpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for ad
... Show MoreSolar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MoreTheresearch took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide a practical evident that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial andthat includes all of them spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. Spatial analysis had
... Show MoreMeasurement of construction performance is essential to a clear image of the present situation. This monitoring by the management team is necessary to identify locations where performance is exceptionally excellent or poor and to identify the primary reasons so that the lessons gained may be exported to the firm and its progress strengthened. This research attempts to construct an integrated mathematical model utilizing one of the recent methodologies for dealing with the fuzzy representation of experts’ knowledge and judgment considering hesitancy called spherical fuzzy analytic hierarchy process (SFAHP) method to assess the contractor’s performance per the project performance pa