The effect of operating parameters on the batch scale separation of hydrocarbon mixture (benzene and hexane) using
emulsion liquid membrane technique is reported. Sparkleen detergent was used as surfactant and heavy mineral oil as
solvent to receive the permeates.
From the experimental results, the parameters that influenced the permeation are, composition of feed, contact time
with solvent, ratio of volume of solvent to volume of hydrocarbon feed, ratio of volume of surfactant solution to volume
of hydrocarbon feed, surfactant concentration, mixing intensity and glycerol as polar additive in the surfactant solution
to eliminate drop breakup.
The best conditions for the separation in this study were found to be: comp
This study aims to Statement of the relationship between Total Quality Management philosophy and Organizational performance from the point of view of the internal customer. A comparison has been made between two companies, one of which applies the requirements of TQM well and the other does not apply these requirements as the (General Company for Electrical Industries/ Diyala) and (General Company for Electrical Industries/ Baghdad) to conduct the search, During the questionnaire prepared for this purpose and distributed to a sample of 30 employees in the General Company for Electric Industries/ Diyala and (20) employees of the General Company for Electrical Industries/ Baghdad. Their answers were analyzed using a simple correlation coef
... Show MoreThis paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
Discriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.
Eight patients (3 male and 5 female) were treated in this study by Endovenous Laser Ablation (EVLA); Mathematical models are proposed to estimate the applied laser power and to assess the recovery period. The estimations of the applied laser power and recovery period in these models will be depended mainly on the diameter of the incompetent vein. In addition, Excel Program was utilized to find the proposed models. A 1470 nm diode laser up to 15W continuous power (CW) was used in the treatment of venous ulcers by EVLA procedure. Following up by duplex ultrasound was started in the 1st week after the first session until the vein is completely closed. The present study concluded that the relationship both between
... Show MoreHome Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show MoreSupport Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a
... Show More