This paper examines the impact of flexural strengthening on the percentage of damaged strands in internally unbonded tendons in partially prestressed concrete beams (0, 14.28%, and 28.57%) and the recovering conditions using CFRP composite longitudinal laminates at the soffit, and end anchorage U-wrap sheets to restore the original flexural capacity and mitigate the delamination of the soffit of longitudinal Carbon Fiber Reinforced Polymer (CFRP) laminates. The composition of the laminates and anchors affected the stress of the CFRP, the failure mode, and thus the behavior of the beam. The experimental results revealed that the usage of CFRP laminates has a considerable impact on strand strain, particularly when anchors are employed. The EB-CFRP laminates increased the flexural capacity by approximately 13%, which corresponds to strand damage of 14.28%, while flexural capacity increased by 9.3%, strand damage increased by 28.57% for members strengthened with laminates only, and around 21.58% and 16.85% for members reinforced with laminates and end anchorings. Quasi-experimental equations have been proposed to estimate the actual stress of untethered tendons considering the effect of CFRP laminates and final fixation winding.
Adsorption is one of the most important technologies for the treatment of polluted water from dyes. Theaim of this study is to use a low-cost adsorbent for this purpose. A novel and economical adsorbent was used to remove methyl violet dye (MV) from aqueous solutions. This adsorbent was prepared from bean peel, which is an agricultural waste. Batch adsorption experiments were conducted to study the ability of the bean peel adsorbent (BPA) to remove the methyl violet (MV) dye. The effects of different variables, such as weight of the adsorbent, pH of the MV solution, initial concentration of MV, contact time and temperature, on the adsorption behaviour were studied. It was found experimentally that the time required to achieve equilibrium
... Show MoreBackground. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show MoreGrowth of Penicillium expansum, an ubiquitous mould found in stored fruit globallyt, was significantly restricted by exposure to 48 h cell-free supernatant of two strains of Lactobacillus plantarum (p < 0.001). In addition, the biotransformation of patulin, a toxic secondary metabolite formed by P. expansum, on exposure to L. plantarum cells and cell-free supernatant highlights the potential of this GRAS microbe as a biocontrol agent. Up to 80% of patulin was biotransformed following a 4 h incubation with 1010 cells ml−1 (37 °C) forming E- and Z-ascladiol. The formation of these products was more pronounced at elevated pH and cell density. Exposure to cell free supernatant or sonicated cells resulted in complete patulin biotransformation
... Show MoreDrug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti‐cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti‐cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti‐cancer drugs and also radiotherapy. Resistance to therapy can increase mortal
In this work Polyynes was synthesized by pulse laser ablation of graphite target in ethanol solution. UV-Visible Spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM) were used to study the optical absorption, chemical bonding, particle size and the morphology. UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen – capped polyyne (Cn+1H2), the absorption peaks intensity increased when the polyynes were produced at different laser energies and the formation rats of polyynes increased with the increasing of laser pulse number. The FTIR absorption peak at 2368.4 cm-1, 1640.0 cm-1 and 1276.
... Show MoreIn this contribution, density functional theory-based calculations have been carried out to assess the electronic, photocatalytic and optical properties of Ce1-xTixO2 system. Ti incorporation leads to a decrease of Ce 4f states and enhancement of Ti 3d states in the bottom of conduction band. Furthermore, it was found that doping ceria with Ti-like transition metals could evidently shift the absorption of pure CeO2 towards higher wavelength range. These findings can provide some new insights for designing CeO2-based photocatalysts with high photocatalytic performance. To the best of our knowledge, this investigation calculates Mullikan’s charge transfer of Ce1-xTixO2 system for the first time. Charge transfer reveals an ionic bond between
... Show MoreIsolation and identification fungi of Emericella nidulans and Aspergillus flavus from a pinkish and yellowish artificial clay, by using potato dextrose agar (PDA). Results revealed that E. nidulans was the best for degrading anthracene (92.3%) with maximum biomass production (3.7gm/l), compared to A. flavus with the rate of degradation (89%) and biomass production of (1.2gm/l), when methylene blue was used as redox indicator after incubating in a shaker incubator 120rpm at 30Co for 8days. Results indicated that E. nidulans has a high ability of anthracene degradation with the rate of (84%), while A. flavus showed the lower level with (77%) by using HPLC.
KA Sharquie, AA Al-Nuaimy, Annals of Saudi Medicine, 2002 - Cited by 48
There is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreBeyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio
... Show More