Abstract: This study aims to investigate the effects of solvents of various polarities on the electronic absorption and fluorescence spectra of RhB and Rh6G. The singlet‐state excited dipole moments (me) and ground state dipole moments (mg) were estimated from the equations of Bakshiev -Kawski and Chamma‐ Viallet using the variation of Stokes shift along with the solvent’s dielectric constant (e) and refractive indexes (n). The observed singlet‐state excited dipole moments were found to be larger than the ground‐state ones. Moreover, the obtained fluorescence quantum yield values were influenced by the environment of the fluorescing molecule. Consequently, the concentration of the dye solution, excited singlet state absorption and aggregate of dye molecules has been found to affect the values of the fluorescence quantum yield.
The electric quadrupole moments for some nitrogen isotopes (12,14,15,16,18N) are
studied by shell model calculations with the proton-neutron formalism. Theoretical
calculations performed using the different set of effective charges due to the core
polarization effect. The effective charges in the p-shell nuclei are found to be
slightly different from those in the sd-shell nuclei. Most of the results we have
obtained are underestimated with the measured data for the isotopes considered in
this work.
There are several oil reservoirs that had severe from a sudden or gradual decline in their production due to asphaltene precipitation inside these reservoirs. Asphaltene deposition inside oil reservoirs causes damage for permeability and skin factor, wettability alteration of a reservoir, greater drawdown pressure. These adverse changing lead to flow rate reduction, so the economic profit will drop. The aim of this study is using local solvents: reformate, heavy-naphtha and binary of them for dissolving precipitated asphaltene inside the oil reservoir. Three samples of the sand pack had been prepared and mixed with a certain amount of asphaltene. Permeability of these samples calculated before and after mixed with asphaltenes. Then, the
... Show MoreThe green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show MoreThe fluctuation properties of energy spectrum, electromagnetic transition intensities and electromagnetic moments in nucleus are investigated with realistic shell model calculations. We find that the spectral fluctuations of are consistent with the Gaussian orthogonal ensemble of random matrices. Besides, we observe a transition from an order to chaos when the excitation energy is increased and a clear quantum signature of the breaking of chaoticity when the single-particle energies are increased. The distributions of the transition intensities and of the electromagnetic moments are well described by a Porter-Thomas distribution. The statistics of electromagnetic transition intensities clearly deviate from a Porter-Thomas distribution (i
... Show MoreTitanium oxide nanoparticles-modified smectite (SMC-nTiO2) as a low-cost adsorbent was investigated for the removal of Rhodamine B (RhB) from aqueous solutions. The adsorbents (SMC and SMC-nTiO2) were characterized by scanning electron microscopy, Fourier transforms infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The effects of various parameters like contact time, adsorbent weight, pH, and temperatures were examined. Three kinetic equations (pseudo-first-order (PFO), pseudo-second-order (PSO), and intra-particle diffusion) were used to evaluate the experimental kinetic of the data and the results showed that the adsorption process is in line with the PSO kinetic model. Adsorption equilibrium isotherms were modeled using La
... Show MoreQuantum gates which are represented by unitary matrices have potentials to implement the reversible logic circuits. M and M+ gates are two well-known quantum gates which are used to synthesize the reversible logic circuits. In this work, we have used behavioral description of these gates, instead of unitary matrix description, to synthesize reversible logic circuits. By this method, M and M+ gates are shown in the truth table form.
The aim of this study was to investigate the effectiveness of binary solvent for regeneration of spent lubricating oil by extraction-flocculation process. The regeneration was investigated by bench scale experiments by using locally provided solvents (Heavy Naphtha, n-Butanol, and iso-Butanol). Solvents to used oil, mixing time, mixing speed and temperatures were studied as operating parameters. The performance on three estimated depended key parameters, namely the percentage of base oil recovered (Yield), percent of oil loss (POL), and the percent of sludge removal (PSR) were used to evaluate the efficiency of the employed binary solvent on extraction process. The best solvent to solvent ratio for binary system were 30:70 for Heavy Naph
... Show MoreHydrogen peroxide was determined by a new , accurate , sensitive and rapid method via continuous mode of FIA coupled with total luminescence measurement which include the chemiluminescence generated ,based on the oxidation of Luminol which is loaded on poly acrylic acid gel beads by hydrogen peroxide in presence of Cobalt (II) ion as a chemiluminescence catalyst and the fluorescence that was created by the insitu radiation of the released chemiluminescence light. Fluorescien molecule was used as an accepter fluorophore where it is irradiated internally and instantly by the generation of luminol chemiluminescence light as internal source for irradiation of fluorescien molecule (Fluorescence Energy Transfer (FRET) ) . It can easily give fl
... Show More