Studies from our laboratory have shown that Δ9-Tetrahydrocannabinol (THC), an ingredient found in marijuana plant Cannabis sativa, can attenuate acute lung injury induced by Staphylococcus enterotoxin B (SEB). In the current study, we investigated the role of THC on the metabolism of SEB-activated lymphocytes. To this end, we determined metabolic potential of SEB-activated lymphocytes treated with vehicle or THC by performing the Cell Mito Stress Test. The oxygen consumption rate (OCR) in THC-treated cells was decreased when compared to vehicle-treated group whereas the extracellular acidification rate (ECAR) was similar in both the groups. Specifically, electron transport chain inhibitors namely, oligomycin, FCCP and rotenone+antimycinA were added to measure ATP-linked respiration, maximal respiration and non-mitochondrial respiration, respectively. THC treatment led to a significant decrease in the basal respiration, ATP production, proton (H+) leak, maximal respiration, spare respiratory capacity and nonmitochondrial respiration. We also performed the Mito Fuel Flex assay to measure the dependency, capacity and flexibility of cells to oxidize glucose, glutamine and fatty acids. Treatment with inhibitors, BPTES and etomoxir showed a decline in the OCR in SEB+vehicle treated cells demonstrating that glutamine and/or fatty acids serve as major source of fuel in these cells when compared to SEB+THC treated group. However, when UK5099 was added, THC- and vehicle-treated cells showed a reduced response thereby indicating that glucose dependency was similar in both the groups. Together, THC modulates metabolic functions of activated lymphocytes which may affect their signaling, differentiation and toxicity.
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
In this paper, a discussion of the principles of stereoscopy is presented, and the phases
of 3D image production of which is based on the Waterfall model. Also, the results are based
on one of the 3D technology which is Anaglyph and it's known to be of two colors (red and
cyan).
A 3D anaglyph image and visualization technologies will appear as a threedimensional
by using a classes (red/cyan) as considered part of other technologies used and
implemented for production of 3D videos (movies). And by using model to produce a
software to process anaglyph video, comes very important; for that, our proposed work is
implemented an anaglyph in Waterfall model to produced a 3D image which extracted from a
video.
PVC membrane sensor for the selective determination of Mefenamic acid (MFA) was constructed. The sensor is based on ion association of MFA with Dodecaphospho molybdic acid (PMA) and Dodeca–Tungstophosphoric acid(PTA) as ion pairs. Nitro benzene (NB) and di-butyl phthalate (DBPH) were used as plasticizing agents in PVC matrix membranes. The specification of sensor based on PMA showed a linear response of a concentration range 1.0 × 10–2 –1.0 × 10–5 M, Nernstian slopes of 17.1-18.86 mV/ decade, detection limit of 7 × 10-5 -9.5 × 10 -7M, pH range 3 – 8 , with correlation coefficients lying between 0.9992 and 0.9976, respectively. By using the ionphore based on PTA gives a concentration range of 1.0 × 10–4 –1.0 × 10–5 M,
... Show MoreAbstract
Objectives: To assess patients’ knowledge and their adherence to Clopidogrel Therapy Post Percutaneous Coronary Intervention, and to find out the relationship between patients’ knowledge and their adherence to Clopidogrel Therapy Post Percutaneous Coronary Intervention
Methodology: A descriptive design was carried out at Al- Nasiriyah Heart Center in Thi-Qar Governorate for the period between May 19th, 2022 to October 25th, 2022. A non-probability sampling was used among (50) patients after their Percutaneous Coronary Intervention. The study instrument that used to collect data was composed of three parts namely: sociodemographic charac
... Show MoreTransportation networks impact millions of people daily. Their efficiency immediately affects travel time, safety, and environmental sustainability. Unfortunately, various issues hinder the expected performance and efficiency of these networks. Traffic congestion is an up-to-date issue in the urban environment. Fuel consumption is high because travel time has increased, which has a passive environmental impact. Extensive research has been conducted to progress the intelligent transportation systems installed on communication networks and information to treat this congestion. However, there is a significant amount of affront residue in combining real-time data, estimation analytics, and 5G abilities effectively. This paper offers a n
... Show MoreMicroalgae have been increasingly used for wastewater treatment due to their capacity to assimilate nutrients. Samples of wastewater were taken from the Erbil wastewater channel near Dhahibha village in northern Iraq. The microalga Coelastrella sp. was used in three doses (0.2, 1, and 2g. l-1) in this experiment for 21 days, samples were periodically (every 3 days) analyzed for physicochemical parameters such as pH, EC, Phosphate, Nitrate, and BOD5, in addition to, Chlorophyll a concentration. Results showed that the highest dose 2g.l-1 was the most effective dose for removing nutrients, confirmed by significant differences (p≤0.05) between all doses. The highest removal percentage was
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show More