We have studied new subclass B (A, B,γ) over multivalent functions. We have present some effects because of the category B (A, B,γ). We bear mentioned simple properties, convolution properties, incomplete sums, weighted mean, arithmetic mean, linear combination, inclusion rapport and neighborhood properties, software concerning fractional calculus then vile residences because of both the classes…
Studies from our laboratory have shown that Δ9-Tetrahydrocannabinol (THC), an ingredient found in marijuana plant Cannabis sativa, can attenuate acute lung injury induced by Staphylococcus enterotoxin B (SEB). In the current study, we investigated the role of THC on the metabolism of SEB-activated lymphocytes. To this end, we determined metabolic potential of SEB-activated lymphocytes treated with vehicle or THC by performing the Cell Mito Stress Test. The oxygen consumption rate (OCR) in THC-treated cells was decreased when compared to vehicle-treated group whereas the extracellular acidification rate (ECAR) was similar in both the groups. Specifically, electron transport chain inhi
The approach given in this paper leads to numerical methods to find the approximate solution of volterra integro –diff. equ.1st kind. First, we reduce it from integro VIDEs to integral VIEs of the 2nd kind by using the reducing theory, then we use two types of Non-polynomial spline function (linear, and quadratic). Finally, programs for each method are written in MATLAB language and a comparison between these two types of Non-polynomial spline function is made depending on the least square errors and running time. Some test examples and the exact solution are also given.
In this research paper, we explain the use of the convexity and the starlikness properties of a given function to generate special properties of differential subordination and superordination functions in the classes of analytic functions that have the form in the unit disk. We also show the significant of these properties to derive sandwich results when the Srivastava- Attiya operator is used.
In this paper, we generalize many earlier differential operators which were studied by other researchers using our differential operator. We also obtain a new subclass of starlike functions to utilize some interesting properties.
Objective: To determine the effectiveness of hypothermia on renal functions for patients undergoing
coronary artery bypass graft CABG surgery.
Methodology: A purposive (non-probability) sample of (50) patients undergoing Isolated coronary artery
bypass graft surgery consecutively admitted to the surgical ward, and they were followed up in the
intraoperative, Intensive Care Unit (ICU) and in the postoperative (surgical ward). Post-operative renal function
test (glumeruler filteration rate (GFR) by using the Crockroft-Gault formula and serum creatinine level) was
determined first week post operative and post operative renal function was classified on the base of peak of
the serum creatinine level and decline of glomeru
Some researchers are interested in using the flexible and applicable properties of quadratic functions as activation functions for FNNs. We study the essential approximation rate of any Lebesgue-integrable monotone function by a neural network of quadratic activation functions. The simultaneous degree of essential approximation is also studied. Both estimates are proved to be within the second order of modulus of smoothness.
The process of selection assure the objective of receiving for chosen ones to high levels more than other ways , and the problem of this research came by these inquires (what is the variables of limits we must considered when first preliminaries selections for mini basket ? and what is the proper test that suits this category ? and is there any standards references it can be depend on it ?) also the aims of this research that knowing the limits variables to basketball mini and their tests as a indicators for preliminaries for mini basketball category in ages (9-12) years and specifies standards (modified standards degrees in following method) to tests results to some limits variables for research sample. Also the researchers depends on (16)
... Show MoreIn this paper, we propose new types of non-convex functions called strongly --vex functions and semi strongly --vex functions. We study some properties of these proposed functions. As an application of these functions in optimization problems, we discuss some optimality properties of the generalized nonlinear optimization problem for which we use, as an objective function, strongly --vex function and semi strongly --vex function.
In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).