The main problem established by a discovery of a thyroid nodule is to discriminate between a benign and malignant lesion. Differential diagnosis between follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. A developing number of some encouraging IHC markers for the differential diagnosis of thyroid lesions have emerged, including, Hector Battifora mesothelial (HBME-1) and galectin-3 (Gal-3). There was significant positive correlation between Galectin-3 and HBME-1 in follicular carcinoma and follicular variant of papillary carcinoma (r= 0.380, P= 0.041) and (r= 0.315, P=0.047) respectively. There was no significant correlation between Galectin-3 and HBME-1 in follicular adenoma and follicular hyperplasia. Immunohistochemical expression of Galectin-3(Gal-3) there was highly significant difference (P<0.001) among study groups (FC, FVPC, FA, follicular hyperplasia) while there was no significant difference in mean of immunohistochemical score of Galectin-3 between follicular carcinoma, follicular variant of and papillary carcinoma (P>0.05); however, carcinoma of both types showed significantly higher Galectin-3 score than both follicular adenoma and follicular hyperplasia (P<0.001). In addition, the score of follicular adenoma was significantly greater than that of follicular hyperplasia (P<0.05). Immunohistochemical expression of HBME-1 immunohistochemical expression of HBME-1was highly significance among study groups (FC, FVPC, FA, follicular hyperplasia) while there was no significant difference in mean score between follicular carcinoma and follicular variant of papillary carcinoma (P>0.05); however, carcinoma of both types showed significantly higher HBME-1 score than both follicular adenoma and follicular hyperplasia (P<0.001). In addition, the score of follicular adenoma was significantly greater than that of follicular hyperplasia (P<0.05).Keywords: Galatin-3, HBME-1, Thyroid.
objectives: To investigate the polyomaviruses (BK, JC) in asymptomatic kidney transplant recipients and healthy persons as control. It is one of the first reports on serological detection and molecular characterization that describes the circulation of polyomaviruses (BKV, JCV) have been done in Iraq recently. Methodology: The present study was designed as prospective case control study was done during the period from November 2015 to August 2016. Total of 97 serum and urine samples were collected randomly from 25 healthy control person and 72 renal transplant recipients, attending Iraqi Renal Transplantatio
INTRODUCTION: A range of tools and technologies are at disposal for the purpose of defect detection. These include but are not limited to sensors, Statistical Process Control (SPC) software, Artificial Intelligence (AI) and machine learning (ML) algorithms, X-ray systems, ultrasound systems, and eddy current systems. OBJECTIVES: The determination of the suitable instrument or combination of instruments is contingent upon the precise production procedure and the category of flaw being identified. In certain cases, defects may necessitate real-time monitoring and analysis through the use of sensors and SPC software, whereas more comprehensive analysis may be required for other defects through the utilization of X-ray or ultrasound sy
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show More The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
3-(4-hydroxyphenyl)-2-(3-(4-nitrobenzoyl) thioureido) propanoic acid (HNP) a new ligand was synthesized by reaction of Tyrosine with (4-Nitrobenzoyl isothiocyanate) by using acetone as a solvent. The prepared ligand (HNP) has been characterized by elemental analysis (CHNS), infrared (FT-IR), electronic spectral (Ultraviolet visible) and(1H,13C-Nuclear Magnetic Resonance) spectra. Some Divalent metal ion complexes of (HNP) were prepared and spectroscopic studies by Fourier transform infrared (FTIR), electronic spectral(UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula of six prepared complexes were [M (HNP)2] (M+2 = Manganese, Cobalt, Nickel, Znic, Cadmium and Mercury),from the
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.