Objective: This study aimed to evaluate the effect of coating titanium (Ti) dental implant with polyether ketone ketone (PEKK) polymer using magnetron sputtering on osseointegration, trying to overcome some of the problems associated with Ti alloys. Material and Methods: Implants were prepared from grade (II) commercially pure titanium (CP Ti), then laser was used to induce roughness on the surface of Ti. PEKK was deposited on the surface of Ti implants by radiofrequency (RF) magnetron sputtering technique. The implants were divided in to three groups: without coating (Ls), with PEKK coating using argon (Ar) as sputtering gas (Ls-PEKK-Ar), and with PEKK coating using nitrogen (N) as sputtering gas (Ls-PEKK-N). All the implants were implanted in the femoral bones of rabbits. After three different healing periods (2, 6, and 12 weeks) the rabbits were sacrificed for a mechanical examination (removal torque) and for histological examination. Results: The results revealed a significant increase in the removal torque mean values when using PEKK coating on Ti implants, with the highest value recorded by Ls-PEKK-N group. Histologically, the study demonstrated the progression of osteogenesis during all the research periods. It was observed that the Ls-PEKK-N group had the highest percentage of new bone formation in all healing periods. Conclusion: The use of PEKK as coating material on the surface of Ti implants by RF- magnetron sputtering results in an increase in the torque required to remove implants and enhance bony tissue formation around the implants especially when using nitrogen as a sputtering gas.
We propose a new object tracking model for two degrees of freedom mechanism. Our model uses a reverse projection from a camera plane to a world plane. Here, the model takes advantage of optic flow technique by re-projecting the flow vectors from the image space into world space. A pan-tilt (PT) mounting system is used to verify the performance of our model and maintain the tracked object within a region of interest (ROI). This system contains two servo motors to enable a webcam rotating along PT axes. The PT rotation angles are estimated based on a rigid transformation of the the optic flow vectors in which an idealized translation matrix followed by two rotational matrices around PT axes are used. Our model was tested and evaluated
... Show MoreThe microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The bet
... Show MoreCatalytic microwave-assisted pyrolysis of biomass is gaining popularity as an alternative to fossil fuels due to health, environmental, climate, and economic issues. This study conducted a catalytic pyrolysis process of the Albizia plant's branches using an Iraqi clay catalyst (bentonite) focusing on the variables including the biomass-particle size, experimental time, microwave power level, and the catalyst-to-biomass ratio. The physical and chemical properties of the resulting biofuel were analyzed presented by HHV, acidity, density, viscosity, GC-MS, FTIR for bio-oil and SEM, EDX, BET, HHV, FTIR for biochar. The study revealed that addition of bentonite as a catalyst led to enhanced production of biogas produced from 5% to 45% an
... Show MoreThe present study aimed to use the magnetic field and nanotechnology in the field of water purification, which slots offering high efficiency to the possibility of removing biological contaminants such as viruses and bacteria rather than the use of chemical and physical transactions such as chlorine and bromine, and ultraviolet light and boiling and sedimentation and distillation, ozone and others that have a direct negative impact on human safety and the environment. Where they were investigating the presence in water samples under study Coli phages using Single agar layer method and then treated samples positive for phages to three types of magnetic field fixed as follows (North Pole - South Pole - Bipolar) and compare the re
... Show More