In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated through the strain profiles, stress distribution, normal force-axial strain, and moment-curvature relationships, shows that the numerical model has good numerical accuracy and is capable of predicting the behavior of structural concrete members with different partially prestressing ratios at serviceability and ultimate loading stages.
Self-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, then 72
... Show MoreConcrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH
This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f
... Show MoreIn the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn
... Show MoreAt the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More