One of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first method used the minimum distance, and the second method used the clustering algorithm called DBSCAN. Both methods were tested with and without reclustering using the self-organizing map (SOM). The result from comparing the images after segmenting them and comparing the time taken to implement the segmentation process shows the effectiveness of these methods when used with SOM.
Background: The main objective was to compare the outcome of single layer interrupted extra-mucosal sutures with that of double layer suturing in the closure of colostomies.
Subjects and Methods: Sixty-seven patients with closure colostomy were assigned in a prospective randomized fashion into either single layer extra-mucosal anastomosis (Group A) or double layer anastomosis (Group B). Primary outcome measures included mean time taken for anastomosis, immediate postoperative complications, and mean duration of hospital stay. Secondary outcome measures assessed the postoperative return of bowel function, and the overall mean cost. Chi-square test and student t-test did the statistical analysis..
Resu
... Show MoreThe COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
The Internet image retrieval is an interesting task that needs efforts from image processing and relationship structure analysis. In this paper, has been proposed compressed method when you need to send more than a photo via the internet based on image retrieval. First, face detection is implemented based on local binary patterns. The background is notice based on matching global self-similarities and compared it with the rest of the image backgrounds. The propose algorithm are link the gap between the present image indexing technology, developed in the pixel domain, and the fact that an increasing number of images stored on the computer are previously compressed by JPEG at the source. The similar images are found and send a few images inst
... Show MoreImage Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IH
... Show MoreThere is much research on the syntax-semantics and the syntax-phonology interaction. However, the exact relation between prosodic patterns and informational structure (as part of pragmatics) is still to be investigated. In this empirical study, we challenge the view that prosody and pragmatics are two autonomous levels of grammar. This paper is an analysis of the narrative poem ‘Mending Wall’ recited by Robert Frost to explore the prosodic features and the associated pragmatic meanings. It is proposed that a set of intentionally manipulated suprasegmental features form a prosodic grammar that works in line with syntax and lexical choices to build the narrative discourse and achieve pragmatic meanings. The paper shows that the am
... Show MoreMelanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution,
... Show More