Biodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C and 3 hr. The characterization tests revealed a crystalline phase of CaO, a specific surface area 12.5m2/gm and good distribution of the active component. The effects of different transesterification reaction variables on the catalyst performance were also investigated. The highest conversion, 96.11% was obtained at 30:1 methanol-to-waste cooking oil molar ratio, 65°C, 3 wt. % catalyst loading and 3 hr reaction time. Additionally, durability of CaO was examined. It was found that high activity and durability were obtained by washing with n-hexan. It found that the use of eggshell as a heterogeneous catalyst for biodiesel production provides a cost-effective and environmentally friendly way of green fuel production.
This study dealt with the reality of groundwater before Sulfur production in the Al-Mishraq field-1 and after production stopped in the field, by measuring the groundwater table for (44) wells in 2021, and comparing it to the groundwater table measured by the Polish company Centrozap in 1971, the groundwater table was a range between (187.71-205.8)m in 1971, but in 2021 it ranged was between (188.51-196.55)m.
Maps of the groundwater movement and water table were created using these data. It turned out that there was little change in the direction of groundwater flow; in both cases, the flow is from the west and northwest towards the east with a slight slope toward the southeast and the Tigris River. As for hydraulic properties, it w
In this research, a qualitative seismic processing and interpretation is made up
through using 3D-seismic reflection data of East-Baghdad oil field in the central part
of Iraq. We used the new technique, this technique is used for the direct hydrocarbons
indicators (DHI) called Amplitude Versus Offset or Angle (AVO or AVA) technique.
For this purposes a cube of 3D seismic data (Pre-stack) was chosen in addition to the
available data of wells Z-2 and Z-24. These data were processed and interpreted by
utilizing the programs of the HRS-9* software where we have studied and analyzed
the AVO within Zubair Formation. Many AVO processing operations were carried
out which include AVO processing (Pre-conditioning for gathe
In this work an experimental study is performed to evaluate the thermal performance
of locally made closed loop solar hot water system using a shell and helical coiled tube
heat exchanger as a storage tank. Several measurements are taken include inlet and outlet
temperatures of both collectors and supply water and temperature distribution within the
storage tank. This is beside the water flow rate in both collectors and load cycle. The
main parameters of the system are obtained.
Beta-carotene pigment was extracted from 6 strains collected from different sources related to some species of the genus Rhodotorula sp. The maximum productivity was in the strain Rhodotorula mucilaginosa BA61 with amount 10.25 gm/l. The minimum productivity was from the strain R. minuta BA78 with amount 5.39 gm/l. The effects of the chemical mutagen (MNNG) and the physical mutagen (UVC) on the viability of the strains was studied. The results revealed that the chemical mutagen (MNNG) with the concentration 0.2 mg/ml has the clear effect on the viability of the strains , which killing percentage reached to 65.91% in the strain R. minuta BA78. Results of the study of mutagenesis with UVC showed that increase in killing percentage fo
... Show MoreBimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –
... Show Moreتم في هذا البحث استخدام المحفز الجديد المصنع من تحميل دقائق البلاتين النانوية على سطح الصفائح النانوية للكرافين كمحفز ضوئي واختباره لدراسة التجزئة الضوئية لملوثات المياه وازالتها بشكل نهائي من مصادر المياه لما لها من تأثير سلبي على البيئة. حيث تم استخدام صبغة البروموفينول الأزرق كمثال على أحد الملوثات. في البدء تم التأكد من تحضير المحفز بالطريقة المستخدمة في طريقة العمل من خلال تشخيصه باستخدام عدد من ا
... Show MoreMetal nanoparticles can serve as an efficient nano-heat source with confinement photothermal effects. Thermo-plasmonic technology allows researchers to control the temperature at a nanoscale due to the possibility of precise light propagation. The response of opto-thermal generation of single gold-silica core-shell nanoparticle immersed in water and Poly-vinylpyrrolidone surrounding media is theoretically investigated. Two lasers (CW and fs pulses) at the plasmonic resonance (532 nm) are utilized. For this purpose, finite element method is used via COMSOL multiphysics to find a numerical computation of absorption cross section for the proposed core –shell NP in different media. Thermo-plasmonic response for both lasers is studied. The
... Show More