Biodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C and 3 hr. The characterization tests revealed a crystalline phase of CaO, a specific surface area 12.5m2/gm and good distribution of the active component. The effects of different transesterification reaction variables on the catalyst performance were also investigated. The highest conversion, 96.11% was obtained at 30:1 methanol-to-waste cooking oil molar ratio, 65°C, 3 wt. % catalyst loading and 3 hr reaction time. Additionally, durability of CaO was examined. It was found that high activity and durability were obtained by washing with n-hexan. It found that the use of eggshell as a heterogeneous catalyst for biodiesel production provides a cost-effective and environmentally friendly way of green fuel production.
In recent decades, breeding deer populations in Iraq have expanded significantly in size and distribution. Owing to their role in pathogen transmission, these deer populations pose a risk to the livestock industry. However, little is known about the parasitic infection status of the breeding deer and the surrounding environment in Iraq. Atotal of 150 deer faecal samples were collected from male and female deer of various ages from four regions of Iraq and examined microscopically for intestinal parasites. Microscopic analysis revealed the presence of seven intestinal parasite species: Entamoeba spp. (48%), Giardia duodenalis (17%), Toxocara spp. (12%), Balantidium coli(9%), Taenia spp. (9%), Strongyloides spp. (3%) and Trichostrongy
... Show MoreAniera desert/cola was found new to science and to the Iraqi fauna. The description was
mainly based on external features and male genit
Catalase (EC 1.11.1.6) is a well known enzyme which exists in almost all living creatures exposing to oxygen (such as plants, bacteria, and animals). It is a very necessary enzyme to protect the cell from oxidative detriment by reactive oxygen species (ROS). The aim of this study is the partial purification and characterization of Catalase enzyme from Banana peels. In this study, fresh banana peels are treated with 70 % ethanol ,further separated with chloroform ,water and ethyl acetate respectively .The supernatant of the enzymatic sample which is treated with chloroform is loaded into gel filtration column with Sephadex G-100 (1.0 x 90 cm) equilibrated with pH7 buffer media (phosphate buffer 0.1 M). Kinetic studies of the purified en
... Show MoreA new series polymers was synthesized from reaction starting material Bisacodyl A or [(2-Pyridinylmethylene) di-4, 1-phenylene di acetate] with hydrogen bromide, then the products were polymerized by addition polymerization from used adipoyl and glutaroyl chloride. The structure of these compounds was characterized by FT-IR, melting points, TLC, X-Ray, DSC and 1H-NMR for starting material. These compounds were also screened for their antibacterial activists?
A process of bacterial cellulose gold nanocomposite has been investigated based on experimental work and cited literature. A literature review on the production process is carried out in this study. Bacterial cellulose is a high crystalline fabric material generally used in biomedical applications. A Nanocomposite was made by synthesis from gold and bacterial cellulose. The experimental work includes growing, and isolating bacterial cellulose, preparation of gold Nanoparticles and preparation of Nano composite. Nanoparticle’s formation and adsorption on the cellulose tissue have been observed visually, where a colour change was observed. The predicted particle size for the gold nano
New technologies have risen into popularity causing the Liquid membrane techniques to evolve over other separation techniques due to its high selectivity and recovery, increased fluxes, and reduced investment and operating cost. This work focuses on extracting Methylene Blue (MB), a cationic dye using a simple BLM separation technique from its aqueous phase. It combines extraction and stripping in a single unit operation. The feed phase was an aqueous solution of MB, the solvent chosen was soybean oil for the liquid/organic membrane phase, and tri-octyl amine acted as a carrier. The strip phase was a hydrochloric acid solution for this study. A two-phase equilibrium study was done to choose the correct solvent, carrier,
... Show Moren this work, a series of new nucleoside analogues (β-glucose liked to pyrazoline moiety) was synthesized. In the beginning, chalcone [1-3] was formed from the reaction of acetophenone and benzaldehyde derivatives in the presence of sodium hydroxide. Pyrazolines [4-6] were obtained from the reaction of the prepared chalcones and hydrazine hydrate in the presence of ethanol absolute. These pyrazolines were treated with β-glucose pentaacetate to afford a series of desirable protected nucleoside analogues [8-10]. After that hydrolysis of protected nuclioside analogues in sodium methoxide gave free nucleoside analogues [11-13]. These new formed compounds were diagnosed by 13C-NMR and 1H- NMR for some of them and FT-IR spectroscopy.
