Preferred Language
Articles
/
6BeHbI4BVTCNdQwCiEd5
The biosorption of reactive red dye onto orange peel waste: a study on the isotherm and kinetic processes and sensitivity analysis using the artificial neural network approach

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Sep 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Adsorption Optimization of Congo Red Dye onto Electrospun Nanofibers of Polyacrylonitrile functionalized with Fe3O4 Nanoparticles

Ferric oxide nanoparticles Fe3O4NPs have been prepared by the coprecipitation method, which were used to functionalize the surface of electrospun nanofibers of polyacrylonitrile to increase their effectiveness in adsorption of Congo red (CR) dye from their aqueous solutions. The effect factors of adsorption were systematically investigated such as adsorbent mass, initial concentration, contact time, temperature, ionic strength and pH. The maximum adsorbed amount of the dye was at 0.003g of adsorbent. The adsorption of dye increased with increasing initial dye concentration and the system reaches to the equilibrium state at 150 min. The adsorbed dye capacity decreases with increasing temperature which indicates to the exothermic nature of ad

... Show More
Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
REMOVAL of HEAVY METALS IONS from AQUEOUS SOLUTIONS USING BIOSORPTION onto BAMBOO

Feasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact t

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil

View Publication Preview PDF
Scopus (9)
Crossref (9)
Scopus Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Mon May 23 2022
Journal Name
The International Journal Of Artificial Organs
Quantitative analysis and control of the torque profile of the upper limb using a kinetic model and motion measurements

This paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indian Journal Of Ecology
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation

Scopus (2)
Scopus