In recent years, the extensive need for high-quality acquisition platforms for various 3D mapping applications has rapidly increased, especially in sensor performance, portability, and low cost. Image-based UAV sensors have overwhelming merits over alternative solutions for their high timeline and resilience data acquisition systems and the high-resolution spatial data they can provide through extensive Computer Vision (CV) data processing approaches. However, applying this technique, including the appropriate selection of flight mission and image acquisition parameters, ground settings and targeting, and Structure from Motion- Multi-View Stereo (SfM-MVS) post-processing, must be optimized to the type of study site and feature characteristics. This research focuses on optimizing the application of UAV-SfM photogrammetry in an urban area on the east bank of the Tigris River in the north region of Iraq following optimized data capturing plan and SfM-MVS photogrammetric workflow. The research presented the practical application of optimized flight planning, data acquisition, image processing, accuracy analysis, and evaluation based on ground truth targets designed for the proposed optimal routine. This includes investigating the influence of the number and distribution of GCPs, flying heights, and processing parameters on the quality of the produced 3D data. The research showed the potential of low-budget and affordable UAV devices to deliver robust 3D products in a relatively short period by demonstrating the value of UAV-based image techniques when contributed to CV algorithms. The results showed powerful outcomes with validation errors reaching a centimeter-level from 100 m flying height when applying the optimized flight plan settings and the appropriate selection of the number and distribution of GCPs. The study established a streamlined UAV mapping procedure, demonstrated the viability of UAV use for 3D mapping applications, offered suggestions for enhancing future applications, and offered clues as to whether or not UAVs could serve as a viable alternative to conventional ground-based surveying techniques in accurate applications.
This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreThis research deals with the financial reporting for non-current assets impairment from the viewpoint of international accounting standards, particularly IAS 36 "Impairment of non-current assets." The research problems focus on the presence of internal and external indicators on impairment of non-current assets in many of companies listed in Iraqi stock exchange. So it is required to apply IAS 36 to reporting for the impairment loss of assets since this impairment impact certain financial indicators. These indicators help users in their decision-making and forecasting future financial situation and the ability of the company to achieve future profits or maintain current profits. The research aims to shedding lig
... Show MoreBackground: A wound is defined as a break or damage in the skin, resulting from physical or thermal damage or as a result of the presence of an underlying medical or physical condition. Herbal medicine can be called one of the branches of medicine in various forms.Phyllunthus amarus is a small herb well known for its medicinal properties and widely used worldwide. P. amarus is an important plant of Indian Ayurvedic system of medicine. Fibronectin is a major component of the extracellular matrix. It is secreted by various cells, primarily fibroblasts, as a soluble protein dimer and is then assembled into an insoluble matrix in a complex cell-mediated process. Materials and methods: Forty rats will be subjected for a surgical operation
... Show MoreThe study was conducted at the College of Agricultural Engineering Sciences - University of Baghdad in 2022. It aimed to improve the growth of the European black Henbane plant (
The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show More