Preferred Language
Articles
/
6BcSP5MBVTCNdQwCAs9a
His- Ventricle (HV) Interval And Syncope As Predictor For Pacemaker Implantation In Patients With Bifascicular Block (BFB)
...Show More Authors

Transient drop in the heart beat or transient heart block (AVB) may be consider the main cause of syncope or presyncope inpatients with bifascicular block and syncope According to the Guidelines for cardiac pacing pacemaker consider part of treatment. Aims of our study were to evaluate whether there is role for EPS in patients BFB and to evaluate the symptoms after pacing. 42 patients were enrolled in this study, with mean age value (63.4± 12.2years), suffer from interventricular conductive defect and syncope; patients underwent EPS on admission time, and pacemaker implantation accordingly and programmed follow up for the device in the last four years. Our patients were 25 (59.5%) male and 17 (40.5%)female, all of them with syncope or presncope and good left ventricular systolic function and the left ventricular ejection fraction (LVEF ≥55%). Left bundle branch block was found in 28 (66.71%) patients, while right bundle branch block were found in,14 (33.3) of them, the result of the EPS was find the cut of HV interval for pacing which represent that that the threshold at level of 75 have a sensitivity of 91% and specificity of 80%. The greater HV intervals gave more successful results for pacing. Pacemaker was implanted in 27 (64.3%) of the patients, with significant relation between pacing and syncope disappeared after pacemaker implantation (p value 000) and in 15 (35.7%) no pacemaker was implanted with persistent symptoms. Pacing were more between patients with coronary artery disease and LBBB with abnormal EPS finding. Permanent pacemaker implantation can implant directly in those old patients with syncope and bifascicular block that associated with LBBB and coronaries artery diseases without or before EP study

Publication Date
Sun Jan 01 2017
Journal Name
Iec2017 Proceedings Book
Improving TF-IDF with Singular Value Decomposition (SVD) for Feature Extraction on Twitter
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology & Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Mon Dec 04 2017
Journal Name
Al-qadisiyah Journal For Administrative And Economic Sciences
Survival Function Estimating of Single age Groups for Generalized Gamma Distribution with Simulation.
...Show More Authors

The analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the

... Show More
Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
The Use of First Order Polynomial with Double Scalar Quantization for Image Compression
...Show More Authors

Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Compare Linear Progamming With Other Methods to Finding Optimal Solution for Transportation Problem
...Show More Authors

The researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Transverse Magnetic Form Factor for 13C(e,e) 13C with Core-Polarization Effects
...Show More Authors

Elastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .

View Publication Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation
...Show More Authors

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro

... Show More
View Publication Preview PDF
Crossref