The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficient between the actual and predicted values for fluoride concentration at the six locations, Al-Karakh, East Tigris, Al-Wathbah, AL-Karamah, Al-Rashid and Al-Wahda WTP intakes, was 0.93, 0.82, 0.86, 0.90, 0.83 and 0.89, respectively. Model verification results indicated that the model forecasting outputs rationally estimated the actual monthly fluoride content in the selected locations.
A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MorePrediction of accurate values of residual entropy (SR) is necessary step for the
calculation of the entropy. In this paper, different equations of state were tested for the
available 2791 experimental data points of 20 pure superheated vapor compounds (14
pure nonpolar compounds + 6 pure polar compounds). The Average Absolute
Deviation (AAD) for SR of 2791 experimental data points of the all 20 pure
compounds (nonpolar and polar) when using equations of Lee-Kesler, Peng-
Robinson, Virial truncated to second and to third terms, and Soave-Redlich-Kwong
were 4.0591, 4.5849, 4.9686, 5.0350, and 4.3084 J/mol.K respectively. It was found
from these results that the Lee-Kesler equation was the best (more accurate) one
In this work, the synergistic effect of chlorinated rubber (additive I),with zeolite 3A (additive II), zeolite 4A (additive III), and zeolite 5A (additive IV) in (1:1) weight percentage, on the flammability for unsaturated polyester resin was studied in the weight ratios for (3,7,10,13&15%) by preparing films of (130×130×3) mm in diameters. Three standard test methods used to measure were the flame retardation which are; ASTM: D-2863, ASTM: D- 635& ASTM: D-3014. Results obtained from these tests indicated that all of the additives were effective additive IV has the highest efficiency as a flame retardant.
Molasse medium containing different concentrations of (NH4)2 SO4, (NH4)3 PO4, urea, KCI, and P2O5 were compared with the medium used for commercial production of C. utilis in a factory south of Iraq. An efficient medium, which produced 19. 16% dry wt. and 5. 78% protein, was developed. The effect of adding various concentrations of micronutrients (FeSO4, 7T20, MnSO4. 7H20, ZnSO4. 7E20) was also studied. Results showed that FeSo4. 7H20 caused a noticeable increase in both dry wt. and protein content of the yeast.
This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T
This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show More